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ABSTRACT
Proper time τ (equivalently s = cτ) is hypothesized to be a real spatial dimension. Such a hypothesis is natural once

Einstein’s special relativity train is revisited. Because mc seems to be the conjugate variable of s, a mass operator
m̂ = −ic−1ℏ∂s follows as in (Chen 2014), generalizing Wigner’s definition of mass. The massive Dirac equation
becomes even more elegant. A penta-dimensional decomposition of the Yang-Mills equations is given, out of which the
Proca equation emerges. This is to be compared to the theory of pre-Maxwell fields (Oron & Horwitz 2003), (Land
2016). In this abelian context, m̂ is seen to be inequivalent to the usual c−1√pµpµ mass. Then, because τ is a physical
dimension, lightlike and timelike geodesics in 4D space-time are seen as lightlike geodesics in 5D space-time. These are
then seen as geodesics in a 4D Riemannian setting. Advantages and drawbacks of a possible conformally-Euclidean
gravitational theory are quickly glimpsed at. The ”anti-gravity” ρ̈ > 0 phenomenon predicted by the Schwarzschild
metric when |β| > 1/

√
3 is revisited. If this effect is real, this could have an impact on an electronic plasma above

13.4 MeV. It follows that the solar corona could float in anti-gravity and that anti-gravity could be a source of nuclear
fusion disruptions inside a tokamak or similar device.
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1. INTRODUCTION
This document is based on this basic intuition: Ein-

stein’s special relativity’s train thought experiment has
more to offer to physics and mathematics than ”just”
special relativity.

Mass as a momentum: A mass operator m̂ =

−ic−1ℏ∂s follows from the wave equation inside Ein-
stein’s train. Although such a definition seems new, it
can be found in (Chen 2014). Because the definition
of m̂ seems so natural, it should probably be found
elsewhere. From this definition of m̂ the massive Dirac
equation becomes more concise because mass is now
”embedded” in the penta-dimensional Dirac operator.
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Towards a new mechanism for mass: From the def-
inition of m̂ and from the 5D→4D decomposition of
the Yang-Mills equations, the Proca equation emerges,
which indicates a possibly new way to give mass to
bosons fields than the Higgs mechanism. When the
structural group is the circle group U(1), the decomposi-
tion yields the pre-Maxwell equations (Oron & Horwitz
2003), (Land 2016).

Removing the ”pseudo” from Riemannian: Under cer-
tain conditions on a pseudo-Riemannian metric, timelike
propagation of matter in 4D space-time (+,−,−,−) can
be reformulated as lightlike propagation in 5D space-
time (+,−,−,−,−). Then lightlike propagation in
this last 5D space-time (+,−,−,−,−) corresponds to
geodesics in a Riemannian (+,+,+,+) setting. This
permits a Riemannian (without the ”pseudo”) reformu-
lation of gravity in a Schwarzschild metric. I think that
this technique is new. But if it’s not, please let me know
and I’ll gladly add references to that.

About anti-gravity: In a Schwarzschild metric, when
the radial speed verifies |β| > 1/

√
3, there is a positive

radial acceleration ρ̈ > 0. This could be interpreted as
an ”anti-gravity” phenonenon. This phenomenon is not
new (Hilbert 1916), (Carmeli 1972), (Felber 2010) and
I’ll not discuss its physicality or unphysicality. What is
new is its emergence in a Riemannianized setting. Let’s
suppose that the anti-gravity phenomenon is physical.
Then it should manifest itself when matter oscillates ra-
dially fast enough. This could have an impact on nuclear
fusion engineering (e.g. ITER) and on the understand-
ing of the solar corona because the energies involved are
in the 10’s of MeV’s, which is what is needed in terms of
kinetic energy per electron to get |β| > 1/

√
3. Now, I’m

not a specialist of nuclear fusion or of the solar corona.
But, something tells me that nuclear fusion physicists
are not aware that Schwarzschild anti-gravity (as an up-
ward push) on the electronic beam could be something
real. Maybe the effect is unphysical or simply negligi-
ble, but if there is an ϵ chance that it does affect the
beam then here is the idea, take it. Then, for the so-
lar corona, was it ever conjectured that the anti-gravity
push predicted by the Schwarzschild metric might lev-
itate the solar corona? So, again, free ideas for you to
play with. Now, is it 100% sure that this anti-gravity
effect on relativistic particles is real? No, the effect of
gravity on relativistic massive particles was never mea-
sured experimentally (Kalaydzhyan 2015).

About Wick rotations: The Atiyah-Floer conjecture
(Atiyah 1988), ASD instantons (Donaldson & Kron-
heimer 1990), (+,+,+,+) Riemannian four-manifolds,
how are they linked to physics? It is usually said that
the (+,+,+,+) space is the (ict, x, y, z) space obtained

from a Wick rotation t 7→
√
−1·t of the (ct, x, y, z) space

to change the signature of the metric. Now, geometers
usually think (but who am I to tell them what to think?)
of this Wick rotation as being some physics trick that
only hardcore physicists can grasp the true meaning. I
think that the (+,+,+,+) is the spatial part (x, y, z, s)

of a penta-dimensional space (ct, x, z, y, s), i.e. is the
spatial part inside Einstein’s train. Hence, Einstein’s
train can be seen as a cobordism between two mirrors.
So, there might be no need to invoke a Wick rotation in
the first place. This is new, I think. If this is not new,
or if this is simply obvious, please notify me and I’ll add
references and clarify that.

Last remark: Although the first version of this docu-
ment was dropped on ResearchGate the 2018-09-19, this
updated version was compiled October 1, 2018.

2. PROPER TIME, AS A PHYSICAL DIMENSION
Let’s start with special relativity. There is someone

sitting beside some bushes looking at a fast moving train
passing by. Inside that train is a mirror glued at the ceil-
ing and one glued to the floor. Between those two mir-
rors is a point particle moving vertically or diagonally
(depending on the reference frame) at the speed of light
c (independently of the reference frame). A cartesian co-
ordinate system is drawn where s is the coordinate along
the vertical of the train and x is a coordinate along the
horizontal train’s track. Because the point particle is
moving at the speed of light, infinitesimal time intervals
dt are given by the Pythagorean theorem:

c2dt2 = dx2 + ds2 (1)

Then ds2 is isolated and promoted to a so-called
Minkowski metric:

ds2 = c2dt2 − dx2 (2)

From now on, special relativity is a mere ritornello con-
sisting of transforming space-time (ct, x) while preserv-
ing ds2. To describe gravity, the Minkowski metric ds2
is promoted, once again, to a pseudo-Riemannian met-
ric:

ds2 =
∑
i,j

gi,jdx
i ⊗ dxj (3)

Now, in a standard general relativistic (GR) context, s
has a double role: a metric ds2 role and a nice parameter
τ = s/c, the so-called proper time, for timelike geodesics.
But thinking of it not only as some abstract internal
clock but as a real tangible dimension as physical as it
is inside Einstein’s train seems to be both heresy and
natural. After all, invoking a physical fifth dimension
to space-time (ct, x, y, z) is not only historically banal
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(Weyl, Kaluza, Klein, Souriau, etc.) but fairly mundane
compared to the number of vertical dimensions (”verti-
cal” in the G-bundle jargon) already invoked in gauge
theoretic particle physics. Let’s hypothesize that s is a
real physical dimension.

Although s is ”vertical” inside Einstein’s train, this
new dimension will be taken to be ”horizontal” in that
it is in the base space (of the G-bundles that will be
considered) and is not a new ”vertical” dimension such
as the fibers of a real line bundle would be. If s was taken
as a vertical fiber, then the Yang-Mills decomposition
below would be different. Even if this is an interesting
option, this will not be done here.

3. MASS, AS IT’S CONJUGATE VARIABLE
Take S to be R, S1, [0, 1] or ]0, 1[. The space inside of

Einstein’s train is R3 × S. Fix a flat Euclidean metric:

c2dt2 = dx2 + dy2 + dz2 + ds2 (4)

Instead of a point particle bouncing at the speed of
light c between the two mirrors, consider instead a time-
dependent complex scalar wave function ψ(t, x, y, z, s)

propagating according to the wave equation:

1

c2
∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+
∂2ψ

∂s2
(5)

Let’s define those four operators:

Ê = iℏ
∂

∂t
p̂x = −iℏ ∂

∂x

p̂y = −iℏ ∂
∂y

p̂z = −iℏ ∂
∂z

Here Ê = iℏ∂/∂t is used to distinguish from a specific
Hamiltonian Ĥ. From the wave equation (5) one is lead
to define mass operator:

m̂ = −iℏ
c

∂

∂s
(6)

which can equivalently be written as:

m̂ = −i ℏ
c2

∂

∂τ
(7)

This mass operator was also defined in (Chen 2014).
Now, the wave equation (5) can be reformulated as:

Ê2ψ = c2(p̂2x + p̂2y + p̂2z + m̂2c2)ψ (8)

If ψ is a penta-dimensional de Brolie wave:

ψ(t, x, y, z, s) = ei(−Et+pxx+pyy+pzz+mcs)/ℏ (9)

equation (8) applied to (9) implies:

E2 = p2c2 +m2c4 (10)

where p := p2x+ p
2
y+ p

2
z. From this follows other famous

equalities:

ν = E/h λB = h/p λC = h/(mc)

where h = 2πℏ as usual. Here λB is the de Broglie
wavelength and λC is the Compton wavelength. Hence,
the Compton wavelength is the de Broglie wavelength
in the s direction. Now, letting λE := hc/E, equation
(10) reformulates geometrically as the Pythagorean the-
orem for the reciprocals (which not the same thing as the
Pythagorean theorem you might be thinking about):

1/λ2E = 1/λ2B + 1/λ2C

Nowadays, mass is defined in a slightly more convo-
luted way than (6). According to the so-called Wigner
classification, mass is defined via the Klein-Gordon
(KG) equation:

1

c2
∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− m2c2

ℏ2
ψ (11)

In other terms, mass squared is defined as the first
Casimir invariant of the Poincaré group. Because equa-
tion (5) generalizes the KG equation, it is worth inves-
tigating how m̂ fits in modern physics. Although the
Dirac and the Proca equations will be dealt with below,
a full generalization of the Higgs mechanism will not be-
cause it would involve dismantling a delicate watchmak-
ing where charges, hypercharges, Weinberg angle, etc.,
are notions that cannot be naively left under the rug.
For a mathematical presentation of the Higgs mecha-
nism, see (Hamilton 2015).

4. UNCERTAINTY ON MASS
Analogously to the canonical commutation relations:

−[t, Ê] = [x, p̂x] = [y, p̂y] = [z, p̂z] = iℏ

one finds:
[s, m̂c] = iℏ

This implies an uncertainty principle on mass:

(∆s)(∆mc) ≥ ℏ/2

Sending the c term to the right hand side one gets:

(∆s)(∆m) ≥ ℏ/(2c) (12)

The added c term to the right, making ℏ/(2c) ≪ ℏ/2,
might be the reason why a quantum physics with a fixed
known classical mass is a good approximation of reality.
Inequality (12) can be written in terms of proper time
τ = s/c as:

(∆τ)(∆m) ≥ ℏ/(2c2)
making the right hand side even smaller and negligible
for most situations.
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5. SCHRÖDINGER EQUATION REVISITED
For x, y ∈ R, x ̸= 0, we have:

|y| ≪ |x| =⇒
√
x2 + y2 ≈ |x|+ y2/(2|x|)

Using this approximation on equation (10), written as:

E =
√
p2c2 +m2c4

gives two approximations, one of which is famous for its
use in non-relativistic mechanics:

p≪ |m|c =⇒ E ≈ |m|c2 + p2/(2|m|) (13)
|m|c≪ p =⇒ E ≈ pc+ (mc)2c/(2p) (14)

where, again, p = p2x + p2y + p2z. Those two approx-
imations, reformulated in terms of operators, yield the
Schrödinger equation (without potential V ) and another
equation:

p≪ |m|c =⇒ iℏ∂t ≈ |m|c2 − (ℏ2/(2|m|))∆ (15)
|m|c≪ p =⇒ iℏ∂t ≈ pc− (ℏ2c/(2p))∂2s (16)

The reader is invited to work out the quantum harmonic
oscillator in this last equation by adding a ks2/2 poten-
tial. Another exercice would be to see the interior of
Einstein’s train between the two mirrors as an infinite
well potential. In both these exercices, the average mass
⟨m̂⟩ψ = ⟨ψ|m̂|ψ⟩ vanishes on any eigenstate ψ of the
Hamiltonian. Only superpositions of these eigenstates
can have non zero mass. Letting such a superposition
of eigenstates evolve in time, the average mass will os-
cillate.

Because mass is now a momentum, it can be negative.
This corresponds to nothing esoteric: a wavefront can
go upward or downward inside Einstein’s train. Because
mass is usually known to be a non-negative real number,
one could define musual := |⟨m̂⟩ψ| ∈ R≥0.

6. A ”QUANTIZATION” OF FIELDS
Why are fields quantized in quantum field theory?

QFT’s fields are quantized because of the two mirrors in
Einstein’s train. Although such an explanation seems
both highly far-fetched and somewhat childish, it links
two 1905 seminal paper’s by Einstein where, in one, Al-
bert hypothesizes that light is quantized and where, in
the other, a light particle bounces in Einstein’s train
to explain special relativity. Because of boundary con-
ditions, Fourier decomposition along the s direction is
discrete. Is this enough to quantize fields? Probably
not.

7. DIRAC EQUATION REVISITED
Let’s fix some notation:

xi = (x0, x1, x2, x3, x4) = (ct, x, y, z, s)

pi = (p0, p1, p2, p3, p4) = (E/c, px, py, pz,mc)

In terms of penta-momentum operator:

p̂i = (p̂0, p̂1, p̂2, p̂3, p̂4)

= (c−1Ĥ, p̂x, p̂y, p̂z, m̂c)

= iℏ(c−1∂t,−∂x,−∂y,−∂z,−∂s)
= iℏ(∂0,−∂1,−∂2,−∂3,−∂4)

where ∂i := ∂/∂xi. Suppose that there exists five al-
gebraic entities a0, a1, a2, a3, a4, whose algebraic prop-
erties are yet to be determined, such that:(

4∑
i=0

ai∂i

)2

= (∂0)
2 − (∂1)

2 − (∂2)
2 − (∂3)

2 − (∂4)
2

It follows that ai must verify the relations of a Clifford
algebra:

aiaj + ajai = 2ηi,j , ∀i, j = 0, 1, 2, 3, 4

where ηi,j is a penta-dimensional (+,−,−,−,−)

Minkowski metric. Define a penta-dimensional Dirac
operator:

D :=

4∑
i=0

ai∂i (17)

Promote the scalar field ψ to a Cn-valued field on which
the ai terms act (i.e. fix a representation of the Clifford
algebra). Then, the penta-dimensional Dirac equation
(i.e. the massive Dirac equation) reads:

Dψ = 0 (18)

This ”new” Dirac equation generalizes in a compact way
Dirac’s original equation:

iℏ∂tψ =

mc2α0 − iℏc
3∑
j=1

αj∂j

ψ

where mass was a distinguished classical fixed quantity.
If ψ is a solution of the Dirac equation (18), then each
vectorial component of ψ is a solution to the wave equa-
tion (5), itself a generalization of the KG equation (11).
Note that the ”new” massive Dirac equation (18) can
also be found in (Chen 2014).

The distinguished mass term of a given massive
fermion field in a given QFT Lagrangian is now em-
bedded in the penta-dimensional Dirac operator (17)
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without the need to invoke a Yukawa coupling between
the fermionic field and the Higgs field (and one could
suppose that a given massive fermion field is of de
Broglie type in the s direction). But what about gauge
boson fields?

8. PENTA YANG-MILLS DECOMPOSITION
Let G be a Lie group among U(1), SU(2), SU(3) or any

product of these and let g be G’s Lie algebra. Let P be
a trivial G-principal bundle over the penta-dimensional
base space (ct, x, y, z, s). Let G < Aut(P ) < Diff(P )

be the gauge group (a subgroup of the G-bundle auto-
morphisms group acting fiberwise). Let A be the space
of connection forms over P . The G-action on A is chosen
to be the right group action A ·Λ = Λ∗A acting via pull-
backs (and not the left group action Λ ·A = (Λ−1)∗A).

If this last paragraph sounds like a foreign language, I
recommend skipping this whole section or reading those
excellent references (Kobayashi & Nomizu 1963), (Don-
aldson & Kronheimer 1990), (Jaffe & Taubes 1980).

Let A be a connexion form over P . Pull-back A down
to the base space via any global section of P . Now
the connexion form lives on the base space (ct, x, y, z, s).
Denote it again by A. Although this last A depends on
a choice of section of P to pull it down to the base space,
we don’t care because we could always gauge transform
A. The G-action on A corresponds on the base space to
this celebrated gauge transformation equation:

A 7→ Adλ−1A+ λ−1dλ

where Ad : G→ Aut(g) is the usual adjoint G-action on
its Lie algebra g.

From the connection A on the 5D space (ct, x, y, z, s)

let’s define:

ϕs := A(ℓ∂s)

As := A− ϕsℓ
−1ds

Here, the Planck length ℓ :=
√
ℏG/c3 plays only a cur-

rency exchange role between unit-free differential geo-
metric objects ϕs and As and the fact that s has units
of physical length ([ds] = dist., [∂s] = 1/dist.). Both ϕs
and As are g-valued and are defined on each space-time
slice (ct, x, y, z, s = const.). This gives a decomposition
of the connection A:

A = As + ϕsℓ
−1ds (19)

as a path of connections As and of fields ϕs on space-
time (ct, x, y, z). To a gauge transformation Λ ∈ G over
the 5D space corresponds a path Λs of gauge transfor-
mations over the 4D space. The corresponding group

action on the decomposition (19) is:

As 7→ Adλ−1
s
As + λ−1

s dλs

ϕs 7→ Adλ−1
s
ϕs + λ−1

s ℓ∂sλs

The curvature form FA = dA+ 1
2 [A∧A] on the 5D space

decomposes as:

FA = Fs + Js ∧ (ℓ−1ds)

where Fs and Js are g-valued differential forms defined
on each independent 4D slice (ct, x, y, z, s = const.) as:

Fs := FAs
(20)

Js := dAs
ϕs − ℓ∂sAs (21)

This decomposition is preserved under gauge transfor-
mations over the 5D space. If one works without trivial-
izing P , then Fs and Js would take values in the adjoint
bundle AdP := P ×Ad g.

Now, recall that the Yang-Mills equations are:

0 = dAFA (i.e. Bianchi identity) (22)
0 = d∗AFA (23)

Here, dA (resp. d∗A) denotes the exterior covariant (resp.
co-)derivative on the 5D space. Let’s fix a unit-free met-
ric on the (ct, x, y, z, s) space:

g = ℓ−2
(
c2dt2 − dx2 − dy2 − dz2 − ds2

)
(24)

Without this ℓ−2 in g, one could loose track of physi-
cal units when using Hodge duality. Working out the
decomposition of the YM equations from the 5D space
(ct, x, y, z, s) to the 4D space (ct, x, y, z), one gets:

0 = d∗As
Js (25)

d∗As
Fs = −ℓ∂sJs + [ϕs, Js] (26)

dAs
Fs = 0 (i.e. Bianchi, again) (27)

∂sFs = dAs
ℓ∂sAs (28)

This decomposition is nothing new and can be found in
standard gauge theory literature (at least the 4D→3D
version) so it is left as a lengthy exercise provided enough
caffeine is in the surroundings.

Equation (25) is the current conservation equation,
equation (26) is the YM inhomogeneous equation and
equation (27) is the YM homogeneous equation. Here,
dAs

and d∗As
denote the ones on each 4D slice and not

on the 5D space as in equations (22, 23).

9. THE PROCA EQUATION



6 Aubin-Cadot

If one gauges away ϕs, equations (25, 26) become:

0 = d∗As
(∂sAs) (29)

d∗As
Fs = ℓ2∂s∂sAs (30)

Using definition (6) of the mass operator m̂, equation
(30) becomes:

d∗As
Fs = −ℓ2

(
m̂c

ℏ

)2

As (31)

If As is sinusoidally de Broglie in the s direction, this
reformulates as:

d∗As
Fs = −ℓ2

(mc
ℏ

)2
As (32)

This equation is known as the Proca equation. Because
the Proca equation is roughly the end product of the
Higgs mechanism, equation (30) seems to indicate a
path to unify, at least philosophically, the mass oper-
ator m̂ = −ic−1ℏ∂s and the Higgs mechanism. In our
present setting, it seems that an eventual Higgs field
φs should not be a mere auxiliary C2-valued field but
rather an appropriate End(g)-valued field φs such that
ℓ∂sAs = φs ◦As.

10. ELECTROMAGNETISM
As a toy model, let’s consider electromagnetism, i.e.

G = U(1). Because G is abelian, Fs and Js from equa-
tions (20, 21) become:

Fs = dAs (33)
Js = dϕs − ℓ∂sAs (34)

Thus, equations (25,26,27,28) become:

0 = d∗Js (35)
d∗Fs = −ℓ∂sJs (36)
dFs = 0 (37)
∂sFs = d(ℓ∂sAs) (38)

These equations are also known as pre-Maxwell equa-
tions (Oron & Horwitz 2003), (Land 2016). Gauge
transformations over the 5D space (ct, x, y, z, s) act on
As and ϕs as:

As 7→ As + d ln(λs)

ϕs 7→ ϕs + ℓ∂s ln(λs)

Because such a transformation leaves invariant Fs and
Js, both Fs and Js are physically tangible. The Fs term
is already known as Maxwell’s electromagnetic field ten-
sor. What about Js? There are four possibilities:

1. Js is unphysical, there is no fifth dimension;

2. Js is a matter current;

3. Js is a photonic current, whatever that means;

4. Js is something else.

Although the first option is the safest bet, the sec-
ond option seems at first somewhat natural. Indeed,
once one fixes ∂sAs = 0 (i.e. massless electromag-
netism), equation (36) looks a lot like Maxwell’s in-
homogeneous equation where charged matter interacts
with the electromagnetic field. One could then factorize
Js as a contraction of a spinor with itself to take ac-
count of fermions such as electrons. But why factorize
Js as a spinor contraction but not Fs? This is where it
gets mathematically either unnatural either very compli-
cated. Because of this, the third option might be worth
a thought or two.

Instead of gauging away ϕs one could gauge away
d∗As. This last gauge fixing is famously known as the
Lorenz gauge. In such a gauge, equation (35) becomes:

0 = d∗dϕs

This equation tells us that for each independent s, the ϕs
field propagates ”as a massless field would do” according
to the usual 4D wave equation:

1

c2
∂2ϕs
∂t2

=
∂2ϕs
∂x2

+
∂2ϕs
∂y2

+
∂2ϕs
∂z2

(39)

Wigner (i.e. KG) tells us that this implies that ϕs is
a massless field. However, ∂sϕs does not need to van-
ish. This is where Wigner’s definition of mass is not
equivalent to the definition (6) of the mass operator m̂.
Even when the field ϕs is massive (according to m̂), it
always propagates at the speed of light (hence the idea
that Js could be a ”photonic current”). Could it be that
electromagnetism is different than, say, photonism?

If Js is something else, what could it be?
It is now time to leave the gauge theoretic world and

go to a much bigger scale: gravity.

11. RIEMANNIANIZED GRAVITY
Einstein’s general relativity is a theory where a

(+,−,−,−) pseudo-Riemannian metric g plays two
roles. First, g is the dynamical variable of the Ein-
stein equation. Second, g tells the geodesic equation
which trajectories are possible for falling objects. Here,
it will only be question of the geodesic equation.

Suppose we are given a t-independent (+,−,−,−)

pseudo-riemannian metric of this kind:

ds2 = gt,tcdt⊗ cdt−
3∑

i,j=1

gi,jdx
i ⊗ dxj (40)
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Consider a geodesic γ : R → R4 of this metric. Un-
less one is interested in science-fiction, there are two
physically meaningful possibilities: either γ it is time-
like and represents massive matter, either γ is light-
like and represents massless light. If γ is timelike, it
can be parametrized by its proper time τ = s/c. If
γ is lightlike, it cannot be parametrized by τ because
ds = 0. Our goal here is to put lightlike geodesics
and timelike geodesics on the same footing. This can
be done now that we know that lightlike geodesics rep-
resent waves propagating horizontally inside Einstein’s
train and timelike geodesics represent waves propagat-
ing mainly vertically inside that same train. Let’s recall
that a geodesic depends on a particular parametrization
while pre-geodesics, being the image set of a geodesic,
does not depend on a choice of parametrization. Pre-
geodesics of the metric (40) correspond to lightlike pre-
geodesics of this penta-dimensional pseudo-Riemannian
metric:

gt,tcdt⊗ cdt−
3∑

i,j=1

gi,jdx
i ⊗ dxj − ds⊗ ds (41)

Because lightlike pre-geodesics are invariant under
conformal transformations of the metric (Candela &
Sanchez 2008), the lightlike pre-geodesics of (41) cor-
respond to lightlike pre-geodesics of this other pseudo-
Riemannian metric:

cdt⊗ cdt− (gt,t)
−1

3∑
i,j=1

gi,jdx
i ⊗ dxj − (gt,t)

−1ds⊗ ds

Lightlike pre-geodesics of this metric correspond to pre-
geodesics of this Riemannian metric:

(cdt)2 = (gt,t)
−1

3∑
i,j=1

gi,jdx
i⊗dxj+(gt,t)

−1ds⊗ds (42)

Let’s call (42) the Riemannianized metric of (40). Thus,
in many physically significant pseudo-Riemannian met-
rics, one can remove the pseudo out of it. Now, lightlike
and timelike geodesics can be both parametrized by t

with ease.

12. THE GEODESIC EQUATION
Suppose that, given some coordinate system (q0, q1, q2),

we have a diagonal metric:

c2dt2 = g0,0dq
0 ⊗ dq0 + g1,1dq

1 ⊗ dq1 + g2,2dq
2 ⊗ dq2

whose coefficients gi,j depend only on the q1 parameter
but are constant on q0 and q2. Then, its Christoffel
symbols:

Γij,k =
∑
m

(1/2)gi,m(∂jgm,k + ∂kgm,j − ∂mgj,k)

are explicitly given by:

Γ0
0,1 = Γ0

1,0 = (1/2)∂1 ln(g0,0)

Γ1
0,0 = −(1/2)(g1,1)

−1∂1g0,0

Γ1
1,1 = (1/2)∂1 ln(g1,1)

Γ1
2,2 = −(1/2)(g1,1)

−1∂1g2,2

Γ2
1,2 = Γ2

2,1 = (1/2)∂1 ln(g2,2)

All other symbols Γij,k vanish. This is straightforward
calculations so it is also left as exercises. It follows that
the geodesic equation

q̈i = −
2∑

j,k=0

Γij,kq̇
j q̇k

becomes explicitly:

q̈0 =− (∂1 ln(g0,0))q̇
0q̇1

q̈1 =(1/2)(g1,1)
−1(∂1g0,0)(q̇

0)2

− (1/2)(∂1 ln(g1,1))(q̇
1)2

+ (1/2)(g1,1)
−1(∂1g2,2)(q̇

2)2

q̈2 =− (∂1 ln(g2,2))q̇
1q̇2

Here the dots denote d/dt. Again, this is left as an
exercise as this is straightforward calculation.

13. THE RIEMANNIANIZED SCHWARZSCHILD
METRIC

The Schwarzschild metric on the equator θ = π/2 is:

ds2 = (1−R/r)c2dt2 − (1−R/r)−1dr2 − r2dφ2 (43)

where R = 2GM/c2 is the Schwarzschild radius of some
massive object (e.g. Earth or Sun). Its corresponding
Riemannianized metric is:

c2dt2 = (1−R/r)−2dr2+(1−R/r)−1(r2dφ2+ds2) (44)

This metric is of the kind seen in section §12 where:

(q0, q1, q2) = (s, r, φ)

and where:

g0,0 = (1−R/r)−1

g1,1 = (1−R/r)−2

g2,2 = (1−R/r)−1r2

Clearly, g0,0, g1,1 and g2,2 only depend on q1 = r. So,
the geodesic equation can be explicitly written as:

s̈ =
Rṡṙ

r2 − rR
(45)

r̈ = −Rṡ
2

2r2
+

Rṙ2

r2 − rR
+

(2r − 3R)φ̇2

2
(46)

φ̈ = − ṙφ̇(2r − 3R)

r2 − rR
(47)
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If one wishes to rewrite this in terms of proper time
τ = s/c, one obviously gets:

τ̈ =
Rτ̇ ṙ

r2 − rR
(48)

r̈ = −Rc
2τ̇2

2r2
+

Rṙ2

r2 − rR
+

(2r − 3R)φ̇2

2
(49)

φ̈ = − ṙφ̇(2r − 3R)

r2 − rR
(50)

14. RIEMANNIANIZED SCHWARZSCHILD
METRIC (ISOTROPIC COORDINATES)

The Schwarzschild metric can also be written in so-
called isotropic coordinates (ct, ρ, θ, φ). Here, the radius
r was replaced by another radius ρ which is related to r
by:

r = ρ · (1 +R/4ρ)
2

The radius ρ does not completely cover the whole range
of r but only r ≥ R. Also, ρ covers this range twice.
However, despite these oddities, ρ is by far closer to a
typical ”Euclidean” radius than r. Indeed, in isotropic
coordinates the Schwarzschild metric (again at θ = π/2)
reads:

ds2 =
(1−R/(4ρ))2

(1 +R/(4ρ))2
c2dt2 − (1 +R/(4ρ))4dσ2 (51)

where:
dσ2 = dx2 + dy2 = dρ2 + ρ2dφ2

One should be aware that when r → ∞, both radius
r and ρ are not asymptotically equal but are slightly
shifted by half a Schwarzschild radius:

r ≈ ρ+R/2

The Riemannianized version of the Schwarzschild metric
in isotropic coordinates is:

c2dt2 =
(1 +R/(4ρ))2

(1−R/(4ρ))2
ds2 +

(1 +R/(4ρ))6

(1−R/(4ρ))2
dσ2 (52)

where dσ2 is the same as above. Again, the Riemannian-
ized isotropic Schwarzschild metric is of the kind seen in
section §12. So, the geodesic equation can be explicitly
written as:

s̈ =
Rṡρ̇

ρ2
1

1−X2

ρ̈ =− ṡ2R

2ρ2
1

(1 +X)4(1−X2)

+
ρ̇2R

2ρ2
2−X

1−X2

+ ρφ̇2 1− 4X +X2

1−X2

φ̈ =− 2ρ̇φ̇

ρ

1− 4X +X2

1−X2

where X := R/(4ρ) is used to simplify the presentation.
As before, as a matter of taste, one could rewrite these
equations in terms of proper time τ = s/c:

τ̈ =
Rτ̇ ρ̇

ρ2
1

1−X2

ρ̈ =− τ̇2c2R

2ρ2
1

(1 +X)4(1−X2)

+
ρ̇2R

2ρ2
2−X

1−X2

+ ρφ̇2 1− 4X +X2

1−X2

φ̈ =− 2ρ̇φ̇

ρ

1− 4X +X2

1−X2

Proving this is, again, straightforward so is left as exer-
cises.

Before moving on to the weak field approximation
R ≪ r of these equations, let’s quickly visit another
interesting metric.

15. CONFORMALLY-EUCLIDEAN GRAVITY
It would be nice if all the (1−R/r) terms in the Rie-

mannianized Schwarzschild metric (44) were to the same
power. However, Nature is not that simple. One term
has a power of −2 and the other has a power of −1. In
fact, this two-to-one ratio is important: it is responsi-
ble for light being deflected twice what Newtonian grav-
ity predicts. It doesn’t mean that we shouldn’t quickly
glimpse at what a conformally-Euclidean based gravita-
tional theory could look like. Suppose we are given such
a metric:

c2dt2 = n(x⃗)2 · (dx2 + dy2 + dz2 + ds2) (53)

where x⃗ denotes (x, y, z, s) and where n(x⃗) is some R>0-
valued function. Here, gravity would be nothing more
than refraction as described by Fermat’s geometrical op-
tics in the (x, y, z, s) space. Such a gravitational theory
is appealing for its mathematical simplicity because it
is based on the eikonal equation:

¨⃗x = n−3c2∇⃗n− 2n−1( ˙⃗x · ∇⃗n) ˙⃗x

where ∇⃗n = (∂xn, ∂yn, ∂zn, ∂sn), instead of the full
geodesic equation. Such a theory also seems appealing
for its physical naturalness (e.g. if one wants to think of
gravity as a mirage of matter waves propagating inside
Einstein’s train).

Now, as a toy model, one should try a Riemannian
metric of this kind:

n(r)2(dx2 + dy2 + dz2 + ds2)
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where r = x2+y2+z2. From such a metric, two critical
tests need to be addressed: the deflection angle of light
by the sun (DALS) and Mercury’s perihelion’s preces-
sion angle over a year (MPPA). If one likes to do numer-
ical simulations, Runge-Kutta 7 with a fixed step-size
of ∆t close to 0.1s ∼ 0.05s works well for MPPA and
close to 0.00001s works well for DALS. In such numer-
ical simulations, one will find that n(r)2 = eR/r gives
roughly a 70% relative error on MPPA. If one tries in-
stead n(r)2 = (1 − R/r)−1, one finds a roughly 35%
relative error on MPPA. Because of those Taylor expan-
sions:

eR/r ≈ 1 +R/r + (1/2)(R/r)2 + ...

(1−R/r)−1 ≈ 1 +R/r + (2/2)(R/r)2 + ...

one is lead to try

n(r)2 = 1 +R/r + (3/2)(R/r)2 (54)

Such a ”gravitational index of refraction” n(r) gives a
striking 1% relative error on MPPA (about the same pre-
cision as a Schwarzschild metric would get). Although
this is a somewhat unexpected result, it fails the other
test by giving the same DALS as Newton’s gravitational
theory, i.e. half the Einsteinian DALS. One then cannot
go further without invoking that photons have a grav-
itational constant G twice that of matter. A doubled
gravitational constant would mean that g loses its spe-
cial status of describing the background. If gravity is in-
deed described by a conformally-Euclidean metric (53),
where n is given by (54), then the ≈ 88 days year dura-
tion of Parker Solar Probe in the 2024 orbit should be
off by roughly 40 seconds compared to what Einstein’s
GR predicts.

A conformally-Euclidean based gravitational theory is
probably mere science-fiction. However, the geodesic
equations from the Schwarzschild metric (43), from the
Riemannianized Schwarzschild metric (44) and from
the Riemannianized isotropic Schwarzschild metric (52)
were all equivalently successful at both tests MPPA and
DALS. So, Riemannianizing a pseudo-Riemannian met-
ric is not just algebraic sorcery, it does work (provided
that at the beginning the pseudo-Riemannian metric is
t-independent and that ∂t is perpendicular to the ”spa-
tial” part).

16. SCHWARZSCHILD ANTI-GRAVITY
Suppose that we are in a low gravity approximation

R≪ r. This approximation is valid both at the surface
of the Earth and of the Sun. The geodesic equation cor-
responding to the Riemannianized Schwarzschild metric

(44) is then approximated by:

τ̈ =
Rτ̇ ṙ

r2
(55)

r̈ = −Rc
2τ̇2

2r2
+
Rṙ2

r2
+ rφ̇2 (56)

φ̈ = −2ṙφ̇

r
(57)

Because relativistic speed are to be considered, there
might be ambiguity in the last rφ̇2 term as to what
is centripetal acceleration and what is not. Remember
that the real ”Euclidean” radius is the isotropic radius ρ.
This is where the isotropic version of the Schwarzschild
metric comes handy. Let’s consider the low gravity ap-
proximation R ≪ ρ (i.e. X ≪ 1) of the geodesic equa-
tion of the Riemaniannized isotropic Schwarzschild met-
ric (52):

τ̈ =
Rτ̇ ρ̇

ρ2
(58)

ρ̈ = − τ̇
2c2R

2ρ2
+
ρ̇2R

ρ2
+ ρφ̇2 (59)

φ̈ = −2ρ̇φ̇

ρ
(60)

Now, we are certain that the last term ρφ̇2 is purely
centripetal and nothing else. Suppose that a point par-
ticle moves in a purely radial motion, i.e. that φ̇ = 0.
Equations (58, 59, 60) then become:

τ̈ =
Rτ̇ ρ̇

ρ2
(61)

ρ̈ = − τ̇
2c2R

2ρ2
+
ρ̇2R

ρ2
(62)

φ̈ = 0 (63)

In low gravity R≪ ρ, the present metric (52) is approx-
imated by:

c2dt2 = ds2 + dρ2 + ρ2dφ2 (64)

So, in our φ̇ = 0 scenario, we have a speed condition of
1 = τ̇2 + β2, where β := ρ̇/c. Substituting this inside
equation (62), one gets:

ρ̈ =
Rc2

2ρ2
(−1 + 3β2)

Using R = 2GM/c2 and letting g := GM/ρ2 implies:

ρ̈ = g · (−1 + 3β2)

Here, g is the usual Newtonian gravitational accelera-
tion. At the surface of planet Earth, g ≈ 9.81m/s2. If
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β is zero, ρ̈ = −g is the same acceleration predicted by
Newton, which is great. But, if |β| > 1/

√
3 ≈ 57.7%,

gravity seems to disappear independently of β’s sign.
Worse, when |β| = 1, gravity points radially outward at
a 2g rate.

This phenomenon of anti-gravity for |β| > 1/
√
3 was

observed since the early days of Einstein’s GR in one
form or another by (Hilbert 1916), (Carmeli 1972), (Mis-
ner & Thorne & Wheeler 1973), (Felber 2010). Is it real?
Let’s suppose that yes.

17. ENERGY CONDITION FOR ANTI-GRAVITY
Define γ := 1/τ̇ = 1/

√
1− β2. Because γ is a mono-

tonically increasing function of |β|, the anti-gravity con-
dition |β| > 1/

√
3 translates as γ >

√
3/2. Since the

energy of a relativistic mass m particle is E = mc2γ,
the kinetic energy of that same particle is:

K = E −mc2 = mc2(γ − 1) (65)

This, in return, gives us a rough kinetic energy scale at
which anti-gravity should manifest itself:

K > mc2(
√
3/2− 1) (66)

This formula does not take into account kinetic energy
due to motions in the two other usual spatial dimensions,
so one might want to multiply it by some factor.

Since h = 6.626 × 10−34J · s, c = 2.998 × 108m/s,
me = 9.109 × 10−31kg and mp = 1.673 × 10−27kg, the

anti-gravity kinetic energy condition yields respectively
Ke > 13.4 MeV for the electron and Kp > 7.3 GeV for
the proton.

Suppose that some dust, gas or plasma bathes in
hard enough radiations so that the particles shake at
|β| > 1/

√
3. Then, anti-gravity should emerge as a

macroscopic phenomenon (shouldn’t it?).
X rays detected from the solar corona are of the order

of Ke and electrons out there have been conjectured to
have energies over 50 MeV’s (Krucker 2008). This is
more than enough for anti-gravity to manifests itself.
Now, even if that doesn’t explain why the solar corona
is so incredibly hot, it could explain why it doesn’t fall
back to the Sun. Does the solar corona float in anti-
gravity?

In a tokamak (or other similar device), where one
wishes to maintain deuterium fusion, one finds a plasma
consisting of two beams: one of ions and one of elec-
trons. The energies involved are also of the order of
MeV’s. Moreover, the electronic beam generally follows
a twisted path along a torus, hence is prone to relativis-
tic oscillations in the radial ρ direction. Nuclear fusion is
constantly plagued with disruptions, electron runaways
and dynamical instabilities. Even if the electronic beam
goes mostly horizontally and not vertically, could it be
that anti-gravity be a source of disruptions?
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