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ABSTRACT
Mass is hypothesized to be a momentum in a 5D Kaluza-Klein setting. The resulting Maxwellian field is not inter-

preted as electromagnetism but, along with the dilaton, as a fifth force. Despite their failure to explain the observation
of dark matter filaments, the possibility that either the Maxwellian field either the dilaton field is responsible for the
rotational curve of galaxies is discussed. Similarities between the dilaton field and the Higgs field are discussed, not
only at a scalar level but at a vectorial level. The electroweak gauge bundle is seen as a subbundle of the 5D tangent
frame bundle. The invisibility and the global topology of the fifth dimension is discussed. An expanding cosmic
wavefront theory is suggested, then discarded. Assuming that mass is a momentum, it is shown that positrons should
have a negative mass and that there should be roughly no gravitational attraction between neighbouring galaxies.
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1. INTRODUCTION
The 4D Klein-Gordon equation and the 5D wave equa-

tion are respectively:
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ψ (1)
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Because they look a lot alike, let’s hypothesize that they
are the same equation. Thus, ψ is an eigenfunction of a
mass operator:

m̂c = −iℏ ∂
∂s

(3)

This amounts to interpret mass no more as the
4D (+,−,−,−) Minkowskian norm of a timelike 4-
momentum:

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = (mc)2

but as a fifth component mc = p4 of a lightlike 5-
momentum:

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 − (p4)
2 = 0
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Let’s call this the mass = momentum hypothesis
(MMH). Such a penta-dimensional perspective was dis-
cussed in (Aubin-Cadot 2018).

The geometrical setup of the MMH is a 5D Kaluza-
Klein (KK) context (Kaluza 1921), (Klein 1926). But,
the interpretation of the geometrical constituents of KK
theory is different than conventional KK theory. The
momentum in the fifth dimension is interpreted as mass,
not as an electrical charge. Thus, the MMH mass is not
a second hand effective mass coming out of an electric
charge. The MMH does not directly involve electro-
magnetism. The resulting KK Maxwellian field is inter-
preted as being part of a fifth force, not as conventional
electromagnetism. This fifth force is suggested to ex-
plain the rotational curve of galaxies. However, it is
incompatible with the observation of dark matter fila-
ments because it is shown that the fifth force does not
bend 4D light rays.

At first, the MMH is not a unification theory of elec-
tromagnetism with gravity because it is not motivated
by such a unification, only by a geometrical definition of
mass. Electromagnetism is part of a broader electroweak
U(1)×SU(2) gauge theory involving a Higgs field. When
digging in the analogies between the KK dilaton field
and the Higgs field, the electroweak structural group
seems to be part of the bigger O(1, 4) structural group
resulting from (+,−,−,−,−) geometry. However, de-
spite the analogies, the MMH mass and the mechanism
by which the Higgs gives mass are different.

Because in the MMH context the electroweak gauge
theory lives over a 5D space, the MMH could be con-
fused with the so-called Universal Extra Dimension
(UED) theory (Arkani-Hamed et al. 1998), (Dienes & al.
1998), (Appelquist et al. 2001). Contrary to the UED
theory, in the MMH theory massive particles are not
free to move in the fifth dimension as if is was just an-
other usual dimension. This is because the 4D timelike
geodesics of massive particles correspond to 5D lightlike
geodesics.

According to the MMH theory, because photons are
massless, their momentum in the fifth dimension van-
ishes. Thus, we do not see the fifth dimension. Be-
cause of momentum conservation and because photons
are massless, it follows that positrons have a negative
mass. It is shown that such a negative mass does not
contradict the expected Lorentz dynamic of a point par-
ticle positron.

Because of (Bonnor 1969), when identifying 4D time-
like dust with 5D lightlike dust, gravity seems to be
turned off between neighbouring galaxies. Nevertheless,
even if gravity is turned off between neighbouring galax-
ies, they do bend 4D light rays as expected.

Outline:
• §2-5 are a pot-pourri of standard definitions, for-

mulas, notation and sign conventions regarding
Riemannian geometry, general relativity and G-
principal bundle theory.

• §6 is a smooth transition from the theory of prin-
cipal bundles to (R,+) KK theory.

• §7 contains the main KK decomposition formu-
las for the Christoffel symbols, the Ricci curvature
and the scalar curvature. I follow (Williams 2015),
but with a (+,−,−,−,−) sign convention instead
of a (+,−,−,−,+). The decomposition of the 5D
Hilbert-Einstein action integral to a 4D one is also
given and the field equations of the metric, of the
Maxwellian field and of the dilaton field are given.

• §8 is devoted to go from the 5D wave equation to
the 4D equations of motion of point particles.

• §9 recalls the electromagnetic interpretation of KK
theory and its implication that particles are ≈ 1020

too heavy.

• §10 gives a precise mathematical formulation of
the above mentioned MMH and the definition of a
mass operator is sketched.

• §11 discusses the possibility that either the
Maxwellian field either the dilaton field could
be taken responsible for the rotational curves of
galaxies.

• §12 suggests a way to get rid of the dilaton field.
Although such a direction is not taken, the same
mathematical considerations will serve to relate
the dilaton to the Higgs.

• §13 suggests a way to define a mass for the dilaton
field in analogy with how the mass of the Higgs is
defined. However, this defined mass is not com-
patible with the MMH.

• §14 relates the dilaton and the Higgs not only at
a scalar level but at a vectorial level. The elec-
troweak gauge bundle is seen as a subbundle of
the 5D tangent frame bundle.

• §15 shows that, according to MMH, positrons
should a negative mass. The idea of a mass opera-
tor is discussed once more. The invisibility of the
fifth dimension is discussed. A expanding cosmic
wavefront theory is discarded. It is argued that
the fifth dimension should be a circle S1, not R.
It is also argued that the MMH implies an absence
of gravity between neighbouring galaxies.
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2. RIEMANNIAN GEOMETRY
Let’s recall some standard definitions of Riemannian

geometry. Let (Q, g) be an n-dimensional pseudo-
Riemannian manifold. Consider local coordinates (xi)
on U ⊂ Q. Let ∂i := ∂/∂xi be defined as dxi(∂j) = δij
where δij equals 1 if i = j and 0 if i ̸= j. The metric g
is locally written:

g|U = gijdx
i ⊗ dxj (4)

where gij := g(∂i, ∂j). Repeated indices are summed
over their range. Let gij be the coefficients of the inverse
matrix [gij ] := [gij ]

−1, i.e. δij = gikgkj . Following (Lan-
dau & Lifschitz 1971), the Christoffel symbols (86.3),
the Riemann curvature tensor (91.4), the Ricci curva-
ture tensor (92.9), the scalar curvature (92.12) and the
Einstein tensor (95.5) of the metric g are respectively
given by:

Γk
ij := (1/2)gkm(∂igjm + ∂jgim − ∂mgij) (5)

Rl
kij :=∂iΓ

l
jk − ∂jΓ

l
ik + Γl

imΓm
jk − Γl

jmΓm
ik (6)

Rij :=R
k
ikj = ∂kΓ

k
ij − ∂jΓ

k
ik + Γl

ijΓ
k
kl − Γl

ikΓ
k
jl (7)

R := gijRij (8)
Gij :=Rij − (1/2)gijR (9)

The Riemannian musicality isomorphisms are:

♭ : TQ→T ∗Q

v = vi∂i 7→ v♭ := g(v, ·) = gijv
idxj

♯ := ♭−1 : T ∗Q→TQ

α = αidx
i 7→α♯ := gijαi∂j

Let:

∥v∥2g := g(v, v) = gijv
ivj

∥α∥2g := g(α♯, α♯) = gijαiαj

When a vector v and a 1-form α are mutually musical,
we have ∥v∥g = ∥α∥g. Let:

det[g] :=det[gij ]

|g| := |det[g]|
dnx :=dx1 ∧ .. ∧ dxn

Ωg := |g|1/2dnx

The Levi-Civita covariant derivative ∇i := ∇∂i
of ten-

sors on Q is given in local coordinates by the Leibniz
product rule and by:

∇if := ∂if ∇i(∂j) := Γk
ij∂k ∇i(dx

k) := −Γk
ijdx

j

On functions, one should not confuse the gradient vector
field of a function:

∇f := (df)♯

= gij(∂if)∂j

and the covariant derivative of a function:

∇f =df
=(∂if)dx

i

These two ∇ are not the same. For this reason, on ten-
sors ∇ will denote a covariant derivative but on func-
tions ∇ will denote the gradient. Also, as an abuse of
notation, the covariant derivative ∇T of a tensor T will
often be denoted ∇T i1...ip

j1...jq
. For example:

∇iFjk = ∂iFjk − Γl
ijFlk − Γl

ikFjl

The covariant Hessian of a function is:

Hij(f) := (∇df)(∂i, ∂j)
=
(
∂i∂j − Γk

ij∂k
)
f

The covariant divergence of a vector field v = vi∂i is
defined implicitly as:

Div(v) · Ωg = LvΩg

The covariant divergence is given explicitly as:

Div(v)=∂iv
i + viΓk

ik

= |g|−1/2∂i

(
|g|1/2vi

)
In particular, we have:

Div(∂i) = Γk
ik = |g|−1/2∂i

(
|g|1/2

)
For α a differential 1-form we have:

Div(α♯) = gij(∂iαj − Γk
ijαk)

The Laplace-Beltrami operator acting on functions is:

∆f :=Div(∇f)
= gij

(
∂i∂j − Γk

ij∂k
)
f

= gijHij(f)

On functions, the Laplace-Beltrami operator equals
minus the Laplace-de Rham operator, i.e. ∆LBf =

−∆LdRf where ∆LdRf := δdf where δ is the Hodge
codifferential. Here ∆ will always denote ∆LB.

In a (+,−,−,−) pseudo-Riemannian setting, ∆

is denoted by the d’Alembertian operator □. In a
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(+,−,−,−,−) pseudo-Riemannian setting, ∆ is de-
noted by the Souriau operator D.

Let γ(λ) be a parametrized curve in (Q, g) and denote
by a dot the derivative d/dλ. γ is said to be a geodesic of
(Q, g) if it satisfies the geodesic equation γ̈k +Γk

ij γ̇
iγ̇j =

0. γ is said to be an integral curve of a vector field v if it
satisfies the integral curve equation γ̇ = v ◦ γ. γ is said
to be a gradient curve of a function f if it is an integral
curve of the gradient vector field ∇f , i.e. γ̇ = (∇f) ◦ γ.
A vector field v ∈ X(Q) is a Killing vector field of g if
Lvg = 0.

Under a conformal rescaling ĝ = e2φg we have:
ĝij = e

2φgij

ĝij = e−2φgij

Γ̂k
ij =Γk

ij + δki ∂jφ+ δkj ∂iφ− gij∇kφ

R̂ij =Rij − (n− 2) (Hij(φ)− (∂iφ)(∂jφ))

−
(
∆φ+ (n− 2)∥dφ∥2g

)
gij

R̂= e−2φ[R− 2(n− 1)∆φ

−(n− 2)(n− 1)∥dφ∥2g]

|ĝ|1/2= enφ|g|1/2

Ωĝ = e
nφΩg

R̂Ωĝ = e
(n−2)φ[R− 2(n− 1)∆φ

−(n− 2)(n− 1)∥dφ∥2g]Ωg

α♯̂= e−2φα♯

v♭̂= e2φv♭

∥v∥2ĝ = e2φ∥v∥2g
∥α∥2ĝ = e−2φ∥α∥2g

D̂iv(v)=Div(v) + ndφ(v)

D̂iv(α♯̂)= e−2φ(Div(α♯) + (n− 2)α(∇φ))
∇̂f = e−2φ∇f
∆̂f = e−2φ(∆f + (n− 2)(df)(∇φ))

3. GENERAL RELATIVITY
Let’s recall some standard definitions of general rel-

ativity (Landau & Lifschitz 1971). Let (Q, g) be a 4-
dimensional (+,−,−,−) pseudo-Riemannian manifold
called spacetime. The Einstein constant is defined as
κ := 8πG/c4. Let L be some Lagrangian density.
The Hilbert energy-momentum tensor of L is defined
as (94.4):

Tij :=2
1

|g|1/2
∂

∂gij
(L|g|1/2)

= 2
∂L

∂gij
− gijL

The Laue scalar of L is defined as:
T := gijTij (10)

The Hilbert-Einstein (HE) action integral SHE is defined
as:

SHE[g, S] :=

∫
Q

(
1

2κ
R+ L

)
Ωg (11)

Using the identity:

Gij =
1

|g|1/2
δ

δgij
(R|g|1/2)

=Rij −
1

2
gijR

the Euler-Lagrange (EL) equation according to varia-
tions in gij of the HE action integral gives the Einstein
field equation (EFE) of general relativity (95.5):

Gij = κTij (12)

Tracing both sides of the Einstein equation (12) with gij
and using the fact that gijGij = −R, one finds (95.7):

R = −κT (13)

Let’s define this tensor:

Kij := Tij −
1

2
gijT (14)

Using (13), the EFE (12) is equivalent to the trace-
reversed EFE (95.8):

Rij = κKij (15)

The electromagnetic (EM) Lagrangian density, the EM
energy-momentum tensor (94.8), the EM Laue scalar
and the EM Kij tensor are respectively:

L=− 1

4µ0
∥F∥2g = − 1

4µ0
gikgjlFijFkl (16)

Tij =− 1

µ0

(
gklFikFjl −

1

4
gij∥F∥2g

)
(17)

T =0 (18)
Kij =Tij (19)

For a real constant a and a Lagrangian density defined
over a real function f as follow, we have:

L=
a

2
∥df∥2g =

a

2
gij(∂if)(∂jf)

Tij =a

(
(∂if)(∂jf)−

1

2
gij∥df∥2g

)
T =−a∥df∥2g

Kij =a(∂if)(∂jf)

For this last L, the EL equation corresponding to vari-
ations in f of (11) gives this other field equations:

∂i

(
∂L

∂(∂if)
|g|1/2

)
=
∂L

∂f
|g|1/2 (20)
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which is here □f = 0. For a perfect fluid of pressure p
and energy density ρe we have (94.9):

Tij =(ρe + p)uiuj/c
2 − pgij

T =ρe − 3p

Kij =(ρe + p)uiuj/c
2 − 1

2
gij(ρe − p)

For a timelike dust we have p = 0 and ∥u∥2g = c2. For
a lightlike dust we have p = 0 and ∥u∥2g = 0. For an
isotropic radiation fluid we have p = ρ3/3 and ∥u∥2g =

c2.

4. G-PRINCIPAL BUNDLE THEORY
Now, let’s recall some standard definitions regarding

Lie groups and G-principal bundle theory (Kobayashi &
Nomizu 1963). Let G be a smooth finite-dimensional
Lie group. Let e ∈ G denote its identity element. Let
g := Lie(G) := TeG denote its Lie algebra. Let:

L : G→Aut(G); λ 7→ Lλ

R : G→Aut(G); λ 7→ Rλ

ι : G→Aut(G); λ 7→ ιλ

denote respectively the left group action, the right group
action and the interior product:

Lλ1
(λ2)=λ1λ2

Rλ1
(λ2)=λ2λ1

ιλ1
(λ2)=λ1λ2λ

−1
1

The adjoint representation is defined as:

Ad : G→Aut(g)

λ 7→Adλ := ((ιλ)∗|e : g → g)

A direct calculation shows that the two maps:

L∗|e : g → X(G)

R∗|e : g → X(G)

are explicitly given on each ξ ∈ g and at each λ ∈ G

by:

(L∗|e(ξ))|λ = (Rλ)∗(ξ)

(R∗|e(ξ))|λ = (Lλ)∗(ξ)

A ξ ∈ g induces a left-invariant vector field on G:

ξ◦ := R∗|e(ξ) ∈ X(G)

The Maurer-Cartan differential 1-form θ ∈ Ω1(G; g) on
G is pointwise defined at each λ ∈ G as:

θ|λ := (Lλ−1)∗ : TλG→ TeG

The Maurer-Cartan 1-form is constant on left-invariant
vector fields, i.e. for all ξ ∈ g we have:

θ(ξ◦) = ξ (21)

For all g ∈ G, the Maurer-Cartan 1-form satisfies:

(Lλ)
∗θ= θ (22)

(Rλ)
∗θ=Ad−1

λ ◦ θ (23)

The first equation is the left-invariance of the Maurer-
Cartan 1-form while the second is its right-equivariance.

Now, let G be a Lie group, call it the structural group.
A right G-principal bundle P over X is a fiber bundle
π : P → X whose fibers are the orbits of a smooth free
right group action:

Φ : G→Diff(P )

λ 7→Φλ

where the canonical projection π is differentiable and
where the total space P is locally trivial. The right group
action Φ is also denoted Φλ(a) = a · λ for a ∈ P and
λ ∈ G. The ”right” aspect of Φ means that Φ : G →
Diff(P ) is an antihomomorphism. The local triviality
of P means that each x ∈ X admits a neighbourhood
Uµ and a G-equivariant map ϕµ : π−1(U) → G, i.e.
ϕµ(a · λ) = (ϕµ(a))λ, ∀a ∈ P, ∀λ ∈ G, such that the
map:

Ψµ : π−1(Uµ) → Uµ ×G; a 7→ (π(a), ϕµ(a))

is a diffeomorphism. To a local trivialization Ψµ corre-
sponds a unique local trivializing section:

sµ : Uµ → π−1(Uµ)

defined over Uµ by:

ϕµ ◦ sµ = e ∈ G

To a local trivializing section sµ over Uµ corresponds a
family of local trivializing sections:

sµ,λ := sµ · λ

over Uµ so that sµ = sµ,e. Denote the graph of sµ,λ by
Γµ,λ := sµ,λ(Uµ) ⊂ π−1(Uµ). For a given sµ, the set of
graphs {Γµ,λ : λ ∈ G} foliate π−1(Uµ). The inverse map
of a local trivialization Ψµ is given by:

Ψ−1
µ : Uµ ×G→ π−1(Uµ); (x, λ) 7→ sµ(x) · λ = sµ,λ(x)

When Uµν := Uµ ∩ Uν ̸= ∅, two local trivializations:

Ψµ :π
−1(Uµ) → Uµ ×G; a 7→ (π(a), ϕµ(a))

Ψν :π
−1(Uν) → Uν ×G; a 7→ (π(a), ϕν(a))
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induce a transition function:

Ψµν : Uµν → G

defined for all a ∈ π−1(Uµ ∩ Uν) by:

Ψµν(π(a)) := Ψ̃µν(a) := ϕµ(a)ϕν(a)
−1

Because Ψ̃µν is G-invariant, Ψµν is well defined. It can
be shown that:

ΨµνΨνγ =Ψµγ

Ψµν(x)=Ψνµ(x)
−1, ∀x ∈ Uµν

sν = sµ ·Ψµν

π ◦Ψ−1
µ (x, λ)=x, ∀(x, λ) ∈ Uµ ×G

ϕµ ◦Ψ−1
µ (x, λ)=λ, ∀(x, λ) ∈ Uµ ×G

Denote by:
ξ• := Φ∗|e(ξ) ∈ X(P )

the fundamental vector field on P corresponding to ξ ∈
g. For all a ∈ P , for all λ ∈ G and for all ξ ∈ g,
fundamental vector fields satisfy:

(Φλ)∗(ξ
•|a) = (Ad−1

λ ◦ ξ)•|a·λ

A connection 1-form A over P is a g-valued differential
1-form A ∈ Ω1(P ; g) that satisfies:

A(ξ•)= ξ, ∀ξ ∈ g (24)
(Φλ)

∗A=Ad−1
λ ◦A, ∀λ ∈ G (25)

The infinitesimal equivalent version of (25) is:

Lξ•A = −[ξ,A], ∀ξ ∈ g (26)

On P there is a canonical vertical distribution V ⊂ TP

pointwise spanned at each point a ∈ P by all fundamen-
tal vector fields:

Va := R⟨ξ•|a : ξ ∈ g⟩ ⊂ TaP (27)

A connection 1-form A on P defines a horizontal distri-
bution H ⊂ TP pointwise defined as being the kernel of
the connection form:

Ha := ker(Aa) ⊂ TaP (28)

The vertical distribution V is G-invariant and integrable
as a foliation whose leaves are the fibers of P . The
horizontal distribution H is also G-invariant because A
is Ad-equivariant, but it is not always integrable as a
foliation. The vertical distribution V and a horizontal
distribution H together satisfy:

H + V =TP (29)
H ∩ V ={0} (30)

To this splitting of TP corresponds respectively a verti-
cal projection and a horizontal projection:

ver : TP → V (31)
hor : TP → H (32)

explicitly given at each a ∈ P and on each v ∈ TaP by:

ver|a(v)= (A(v))•|a (33)
hor|a(v)= v − ver|a(v) (34)

so that v = hor(v)+ver(v). When a trivialization Ψµ is
given, a straightforward calculation shows that for all:

(v1, v2) ∈ TxUα ⊕ TλG = T(x,λ)(Uα ×G)

the map:

(Ψ−1
µ )∗|(x,λ) : T(x,λ)(Uα ×G) → Tsµ,λ(x)(π

−1(Uµ))

is explicitly given by:

(Ψ−1
µ )∗|(x,λ)(v1)= (sµ,λ)∗|x(v1) (35)

(Ψ−1
µ )∗|(x,λ)(v2)= (θ|λ(v2))•|sµ,λ(x) (36)

A connection 1-form A on P can be pulled back via sµ,λ
to Uµ :

Aµ,λ := s∗µ,λA ∈ Ω1(Uµ; g)

Letting Aµ := s∗µA = Aµ,e, a straightforward calculation
shows that the Ad-equivariance of A implies:

Aµ,λ = Ad−1
λ ◦Aµ

Pulling back A to Uµ ×G via Ψ−1
µ , another straightfor-

ward calculation using (35) and (36) shows that:

(Ψ−1
µ )∗A=Aµ,λ + θ

=Adλ−1 ◦Aµ + θ

Principal bundles are a generalization of Lie groups.
The manifold P generalizes a Lie group G̃. The struc-
tural group G generalizes a subgroup G < G̃. The right
group action Φ : G→ Diff(P ) generalizes the right sub-
group action R : G → Aut(G̃). For ξ ∈ g, the funda-
mental vector field ξ• = Φ∗|e(ξ) ∈ X(P ) generalizes the
left-invariant vector field ξ◦ = R∗|e(ξ) ∈ X(G̃). The two
properties (24) and (25) respectively generalize (21) and
(23).

Now, it happens that sometimes on a principal bundle
P we are not given a connection A but a metric g. Let’s
see what happens then.
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5. A METRIC ON A PRINCIPAL BUNDLE
Let P be a G-principal bundle and let V ⊂ TP be

its vertical distribution. Suppose that P is endowed
with a pseudo-Riemannian metric g such that the per-
pendicular distribution H := V ⊥ satisfies (29,30). De-
pending on g, the distribution H might or might not be
G-invariant. Because V is G-invariant, a sufficient con-
dition for H to be G-invariant is that g is G-invariant:

Φ∗
λg = g, ∀λ ∈ G (37)

This is the so-called KK cylindrical condition on g. The
infinitesimal equivalent version of the cylindrical condi-
tion (37) is Lξ•g = 0,∀ξ ∈ g.

May g be cylindrical or not, V and H do induce ver-
tical and horizontal projections (33,34) and a unique
g-valued differential 1-form A ∈ Ω1(P ; g) on P that sat-
isfies (24) and (28):

A(ξ•)= ξ, ∀ξ ∈ g

H=ker(A)

Such an A is not necessarily a connection form because
it does not necessarily satisfy the Ad-equivariance prop-
erty (25). In fact, A satisfies (25) if and only if the distri-
bution H = V ⊥ is G-invariant. So, when g is cylindrical,
A is a connection form.

May g be cylindrical or not, using a local trivialization
Ψµ, we still have:

(Ψ−1
µ )∗A = Aµ,λ + θ

Using the horizontal and the vertical projections, let’s
define two bilinear forms on P :

gH(·, ·) := g(hor(·),hor(·))
gV (·, ·) := g(ver(·), ver(·))

Because H and V are perpendicular, the metric g de-
composes as:

g = gH + gV (38)
Let’s define:

K : P → g∗ ⊗ g∗; a 7→ Ka

Ka(ξ1, ξ2) := g|a(ξ•1 |a, ξ•2 |a), ∀a ∈ P, ∀ξ1, ξ2 ∈ g

This function K has nothing to do with the tensor Kij

defined in (14). The letter K is here chosen so that in
certain circumstances it equals the bilinear Killing form
K on g defined as Tr(adξ1 ◦adξ2). Using (33), we have:

gV (·, ·) = K(A(·), A(·)) (39)

Hence, (38) becomes:

g = gH +K(A,A) (40)

To sum it up, the group action Φ and the metric g on
P induce all these things on P : H, V , A, gH , gV , K.

Let’s choose a local trivialization Ψµ. To it corre-
sponds a family of local trivializing sections sµ,λ. Via
sµ,λ, let’s pull back all these things down to Uµ:

Aµ,λ := s
∗
µ,λA

Kµ,λ := s
∗
µ,λK

gH,µ,λ := s
∗
µ,λgH

gV,µ,λ := s
∗
µ,λgV = Kµ,λ(Aµ,λ, Aµ,λ)

gµ,λ := s
∗
µ,λg = gH,µ,λ + gV,µ,λ

The metric g pulled back to Uµ ×G is explicitly:

(Ψ−1
µ )∗g=(Ψ−1

µ )∗gH + (Ψ−1
µ )∗gV

= gH,µ,λ +Kµ,λ(θ +Aµ,λ, θ +Aµ,λ)

If one supposes that g is cylindrical and supposes that K
is Ad-invariant, then the metric (40) is a Kaluza-Klein
metric with structural group G. The structural groups
G we are interested is (R,+).

6. A SPECIFIC (R,+)-PRINCIPAL BUNDLE
Let (Q, g) be a (+,−,−,−,−) pseudo-Riemannian

manifold endowed with a spacelike vector field v ∈ X(Q).
Assume that the vector field v defines a flow:

Φ : (R,+)→Diff(Q)

λ 7→Φλ

that makes Q a (R,+)-principal bundle over Q̃ := Q/R.
The group (R,+) can be replaced by U(1) at wish. Con-
sider a single coordinate x4 on the 1-dimensional Lie
group (R,+). Let ∂4 := ∂/∂x4. Doing so, v = ∂•4 is
a fundamental vector field on Q. The Maurer-Cartan
1-form on (R,+) is θ = dx4 ⊗ ∂4. The metric g and the
vector field v induce two distributions V and H on Q

pointwise defined at each q ∈ Q as:

Vq :=R⟨vq⟩ ⊂ TqQ

Hq :=V
⊥
q ⊂ TqQ

Let’s assume that g is cylindrical, i.e. let’s assume that
v is a Killing vector field of g:

Lvg = 0

The metric g and the vector field v induce a Lie algebra
valued differential 1-form form A on Q:

A :=
v♭

∥v∥2g
⊗ ∂4 (41)

This differential 1-form satisfies the axioms (24,25) of
a connection 1-form. Let’s fix a local trivialization Ψµ
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of Q and let sµ,λ be its corresponding family of local
trivializing sections. A straightforward calculation using
the formulas of §5 shows that the pulled back metric
(Ψ−1

µ )∗g on Uµ × R looks like this:

(Ψ−1
µ )∗g = g̃ − h2β ⊗ β (42)

Here, the function h : Q→ R>0, the differential 1-forms
β̃ and β and the bilinear form g̃ are defined as:

h2=−K(v, v) = −∥v∥2g (43)
β̃=dx4 ◦Aµ,λ (44)
β=dx4 ◦ (Aµ,λ + θ) = β̃ + dx4 (45)
g̃= gH,µ,λ (46)

The minus signs in (42,43) are because v is spacelike.
The bilinear form g̃ is a (+,−,−,−) metric on Uµ. Even
if (42) looks like nothing important, it is in fact the usual
shape of a standard 5D KK metric:

[
(Ψ−1

µ )∗g
]
ij
=

g̃ij − h2β̃iβ̃i −h2β̃i
−h2β̃j −h2


For simplicity of the following presentation, I will as-
sume that the local trivialization Ψµ is a global trivial-
ization:

Ψµ : Q→ Q̃× R

The equality (42) is now global on Q. We can simplify
things even further by assuming that Q is not only dif-
feomorphic to Q̃× R via Ψµ, but that it is equal to it:

Q = Q̃× R

Doing so, we can forget Ψµ and assume that the metric
g on Q has this shape:

g = g̃ − h2β ⊗ β (47)

7. KALUZA-KLEIN THEORY
Consider a (+,−,−,−,−) cylindrical metric g on the

5D space Q = Q̃× R that decomposes as (47):

g = g̃ − h2β ⊗ β (48)

Here, h is a R>0-valued function, β̃ =
∑

i ̸=4 β̃idx
i is a

differential 1-form without dx4, β = β̃ + dx4 is a dif-
ferential 1-form and g̃ is a bilinear form without dx4.
Explicitly:

g̃(∂4, ·)= g̃(·, ∂4) = 0

∂4g̃ij =0

∂4h=0

β̃(∂4)=0

∂4β̃i=0

In KK theory, the field h is called the dilaton field. The
indices of β̃i and of g̃ij range over i, j = 0, ..., 3. Let
β̃i := g̃ij β̃j and ∥β̃∥2g̃ := g̃ij β̃iβ̃j . The components gij
of the metric g and the components gij of the inverse
matrix [gij ] = [gij ]

−1 are:

gij =


g̃ij − h2β̃iβ̃j for i ̸= 4, j ̸= 4

−h2β̃j for i = 4, j ̸= 4

−h2β̃i for i ̸= 4, j = 4

−h2 for i = 4, j = 4

gij =


g̃ij for i ̸= 4, j ̸= 4

−β̃j for i = 4, j ̸= 4

−β̃i for i ̸= 4, j = 4

∥β̃∥2g̃ − h−2 for i = 4, j = 4

A straightforward calculation shows that, indeed, we
have δij = gikgkj . For i, j, k, l ̸= 4, let:

ω :=
∑
i,j ̸=4

ωijdx
i ⊗ dxj =

∑
i,j ̸=4

(∂iβ̃j − ∂j β̃i)dx
i ⊗ dxj

∥ω∥2g̃ := g̃ikg̃jlωijωkl

∇̃iωjk :=∂iωjk − Γ̃l
ijωlk − Γ̃l

ikωjl

The following Christoffel symbols, Ricci curvature,
scalar curvature, Einstein tensor and unitary 5D vol-
ume form are given by reformulating those computed
in (Williams 2015). For i, j, k, l ̸= 4, the Christoffel
symbols Γk

ij of g are given as follow:

Γk
ij =Γ̃k

ij −
1

2
g̃kl(β̃jh

2ωil + β̃ih
2ωjl − 2β̃iβ̃jh∂lh)

Γk
i4=Γk

4i = −1

2
g̃kl(h2ωil − 2β̃ih∂lh)

Γk
44= g̃

klh∂lh

Γ4
ij =−β̃lΓ̃l

ij −
1

2
β̃lβ̃jh

2ωli −
1

2
β̃iβ̃

lh2ωlj

+
1

2
(∂iβ̃j + ∂j β̃i) + β̃j∂i lnh+ β̃i∂j lnh

−β̃iβ̃j β̃lh∂lh

Γ4
i4=Γ4

4i = −1

2
β̃lh2ωli − β̃iβ̃

lh∂lh+ ∂i lnh

Γ4
44=−β̃lh∂lh

For i, j, k, l ̸= 4, the Ricci curvature of g is:

Rij = R̃ij +
1

2
h2g̃klωikωjl − h−1H̃ij(h)

−β̃iβ̃jR44 + β̃iRj4 + β̃jRi4

Ri4=−1

2
h2g̃jk∇̃jωik − 3

2
g̃jkh(∂kh)ωij + β̃iR44

R44=h□̃h+
1

4
h4∥ω∥2g̃
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The scalar curvature of g is:

R = R̃− 2h−1□̃h+
1

4
h2∥ω∥2g̃ (49)

For i, j, k, l ̸= 4, the Einstein tensor of g is:

G44=R44 +
1

2
h2R

=
1

2
h2R̃+

3

8
h4∥ω∥2g̃

G4i=R4i +
1

2
h2β̃iR

= β̃iG44 −
1

2
h2g̃kl∇̃lωik − 3

2
ωikh∂̃

kh

Gij =Rij −
1

2
gijR

= G̃ij − β̃iβ̃jG44 + β̃iGj4 + β̃jGi4

+
1

2
h2(g̃klωikωjl −

1

4
g̃ij∥ω∥2g̃)

− 1

h
(H̃ijh− g̃ij□̃h)

The 5D volume form Ωg of g is related to the 4D volume
form Ωg̃ of g̃ as:

Ωg = hΩg̃ ∧ dx4 (50)

Now that we have all the KK formulas at our dis-
posal, we can get the 4D EFE via the 5D HE action
integral. Here I follow mostly (Williams 2015) and (Co-
quereaux & Esposito-Farese 1990). Substituting the
scalar curvature (49) and the 5D volume form (50) of
the x4-independent metric (48) in the 5D HE action in-
tegral (11) on Q = Q̃× [x40, x

4
1], we get:

SHE[g]=
1

2κ

∫
Q

RΩg

=
1

2κ

∫
Q

(
R̃− 2h−1□̃h+

1

4
h2∥ω∥2g̃

)
hΩg̃ ∧ dx4

=
1

2κ
(x41 − x40)

∫
Q̃

(
hR̃− 2□̃h+

1

4
h3∥ω∥2g̃

)
Ωg̃

Because □̃h = D̃iv(∇̃h) is a divergence term, we can
discard it from the integral. Because the numerical value
of the multiplicative constant x41 −x40 does not alter the
EL equations, we can assume that it equals 1. Doing so,
we get:

SHE[g̃, h, β̃] =
1

2κ

∫
Q̃

(
hR̃+

1

4
h3∥ω∥2g̃

)
Ωg̃ (51)

The usual 4D HE action integral does not have such a
coupling between R̃ and h. As is usually done in KK
theory, we can get rid of this coupling via a conformal

transformation. More precisely, the needed conformal
transformation is:

g̃ = e2φĝ (52)
for h = e−2φ, i.e. g̃ = h−1ĝ. Doing so, using the confor-
mal transformation formulas in §2, we get:

g̃ij = e
2φĝij (53)

g̃ij = e−2φĝij (54)
Γ̃k
ij =Γ̂k

ij + δki ∂jφ+ δkj ∂iφ− ĝij ĝ
kl∂lφ (55)

R̃= e−2φ(R̂− 6□̂φ− 6∥dφ∥2ĝ) (56)
Ωg̃ = e

4φΩĝ (57)
e−2φR̃Ωg̃ =(R̂− 6□̂φ− 6∥dφ∥2ĝ)Ωĝ (58)

Discarding the divergence term □̂φ = D̂iv(∇̂φ), the 4D
HE integral becomes:

SHE[ĝ, h, β̃] =

∫
Q̃

(
1

2κ
R̂+ L

)
Ωĝ (59)

where the Lagrangian density is:

L =
1

2κ

(
−3

2
∥d lnh∥2ĝ +

1

4
h3∥ω∥2ĝ

)
(60)

If we were to use σ = h1/3 as in (Gross & Perry 1983)
p.34, the Lagrangian density (60) would look like:

L =
1

2κ

(
−1

6
∥d lnσ∥2ĝ +

1

4
σ∥ω∥2ĝ

)
(61)

Also, using h = e−2φ as above, the Lagrangian density
(60) can be seen as:

L =
1

2κ

(
−6∥dφ∥2ĝ +

1

4
e−6φ∥ω∥2ĝ

)
(62)

Let’s now look at the EL equations corresponding to
the HE action integral (59). Via variations in ĝ, we get
respectively the EFE, the trace-reversed EFE and the
Einstein traced equation:

Ĝij =κT̂ij (63)
R̂ij =κK̂ij (64)
R̂=−κT̂ (65)

Here, T̂ij , T̂ , and K̂ij are:

T̂ij =
3

2κ

(
−(∂i lnh)(∂j lnh) +

1

2
ĝij∥d lnh∥2ĝ

)
+
h3

2κ

(
ĝklωikωjl −

1

4
ĝij∥ω∥2ĝ

)
(66)

T̂ =
3

2κ
∥d lnh∥2ĝ (67)

K̂ij =− 3

2κ
(∂i lnh)(∂j lnh)

+
h3

2κ

(
ĝklωikωjl −

1

4
ĝij∥ω∥2ĝ

)
(68)



10 Aubin-Cadot

The EL equation for variations in β̃ is:

0 = δ̂(h3ω) (69)

where δ̂ is the de Rham codifferential for ĝ. When
h is constant, (69) reads δ̂ω = 0. Combined with
dω = d2β̃ = 0, these two equations are Maxwell’s equa-
tions. Thus, the KK Maxwellian field ω behaves like a
Maxwellian field. Also, (69) can be equivalently written
as:

0 = ∇̂i(h
3ωij) (70)

The EL equation for variations in h is:

h□̂h− ∥dh∥2ĝ = −1

4
h5∥ω∥2ĝ (71)

Using this identity:

□̂ lnh = h−1□̂h− ∥d lnh∥2ĝ

the EL equation (71) is equivalent to:

□̂ lnh = −1

4
h3∥ω∥2ĝ (72)

8. FROM THE 5D WAVE EQUATION TO
THE 4D EQUATIONS OF MOTION

Let D be the Laplace-Beltrami-Souriau operator cor-
responding to the KK metric (48) on Q. Suppose that a
WKB wave with constant amplitude ψ = eiS/ℏ satisfies
the 5D Klein-Gordon (KG) equation:

Dψ = −
(µc
ℏ

)2

ψ (73)

Here, µ is a real constant playing a role analogous to the
mass m in the 4D KG equation. This equation (73) was
considered in e.g. (Souriau 1962). Letting p := dS, the
equation (73) is equivalent to:

(µc)2=∥p∥2g (74)
0=DS (75)

From (74,75), one can show that the light rays of ψ, i.e.
the gradient curves of S, are geodesics in (Q, g).

Having µ ̸= 0 in (73) is useful when one wants to
interpret KK theory as a unification of electromagnetism
and gravity. But, in our present scenario, we are not
interested in electromagnetism, we only want to see the
mass of a 4D KG wave as a fifth momentum of a massless
5D wave. Doing so, we take µ = 0 and the 5D KG
equation (73) becomes the 5D wave equation:

Dψ = 0 (76)

Similarly, (74,75) respectively become:

0= ∥p∥2g (77)
0=DS (78)

Thus, the light rays of the WKB wave ψ are light-
like geodesics in the 5D space (Q, g). These lightlike
geodesics in the 5D space Q correspond to some curves
in the 4D space Q̃. Let’s take a look at the equations of
motion of these 4D curves.

Let mP :=
√

ℏc/G be the Planck mass, introduced
here only to match physical units. Let u := ∇S/mP, so
that p and u are related as:

mPg(u, ·) = p (79)

Explicitly, the components pi = ∂iS of the differential
1-form p = pidx

i and the components ui = ∂iS/mP,
where ∂i := gij∂j , of the vector field u = ui∂i are related
via the KK metric (48) as:

pi=mPgiju
j (80)

ui=m−1
P gijpj (81)

For i ̸= 4, a straightforward calculation shows that
(80,81) imply:

p4/mP=−h2(β̃iui + u4) (82)
mPu

i= g̃ij(pj − p4β̃j) (83)

Let γ = γ(τ) be a gradient curve of S, i.e. γ̇ = u

where the dot denotes d/dτ . The curve γ is a lightlike
geodesic in the 5D space (Q, g). Because 0 = ∇g, the
geodesic equation can be written in two ways:

0=∇uu

0=∇up

These two equations can be written in terms of compo-
nents for i, j, k = 0, ..., 4 as:

0=ui∂iu
k + uiujΓk

ij

0=ui∂ipk − uipjΓ
j
ik

or, equivalently, as:

u̇k =−uiujΓk
ij (84)

ṗk =mPu
iulgjlΓ

j
ik (85)

The two terms of interest are ṗ4 and u̇k for k ̸= 4. First
of all, (85) implies that p4 is a constant of motion:

ṗ4/mP=uiulgjlΓ
j
i4

=uiulgjl

(
1

2
gjm(∂igm4 + ∂4gmi − ∂mgi4)

)
=

1

2
uiulδml (∂igm4 − ∂mgi4)

=
1

2
uiul(∂igl4 − ∂lgi4)

=0
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Another way to see that p4 is constant along the geodesic
γ is to recall that the geodesic flow on (Q, g) is the
projection to Q of the Hamiltonian flow on the cotan-
gent bundle T ∗Q of the x4-independent Hamiltonian
H = 1

2mP
gijpipj .

Remark that even if p4 is a constant of motion, u4 is
not necessarily constant. However, when h is constant
and when β̃ vanishes, then u4 is constant.

Now, a straightforward deployment of the indices of
the KK metric (48) and of its Christoffel symbols in the
equation of motion (84) gives, for i, j, k ̸= 4:

u̇k + Γ̃k
iju

iuj = − p4
mP

g̃jkωiju
i − p24

m2
P

h−3∂̃kh (86)

Here, ∂̃k := g̃kj∂j . Using the above conformal transfor-
mation (52), i.e. ĝ = hg̃ for h = e−2φ, we can substitute
(53,53,53) in (86). Doing so, we get the equation of
motion for γ in terms of ĝ instead of g̃:

u̇k + Γ̂k
iju

iuj =− p4
mP

hĝjkωiju
i − p24

m2
P

h−2∂̂kh

−1

2
(∂̂k lnh)∥u∥2ĝ + (∂i lnh)u

iuk (87)

Here, ∂̂k := ĝkj∂j .
Another straightforward calculation using the metric

(48), the conformal transformation (52), the relation-
ships (80,81) and the equalities (82,83) shows that the
norm of p and u in terms of g, g̃ and ĝ are related as:

∥p∥2g =∥p− p4β̃∥2g̃ − p24/h
2 (88)

∥p∥2g =h∥p− p4β̃∥2ĝ − p24/h
2 (89)

∥u∥2g =∥u∥2g̃ − p24/(h
2m2

P) (90)
∥u∥2g =∥u∥2ĝ/h− p24/(h

2m2
P) (91)

In our scenario (77,78), we have ∥u∥2g = ∥p∥2g/m2
P = 0.

So, (88,89,90,91) become:

∥p− p4β̃∥2g̃ =p24/h2 (92)
∥p− p4β̃∥2ĝ =p24/h3 (93)

∥u∥2g̃ =p24/(h2m2
P) (94)

∥u∥2ĝ =p24/(hm2
P) (95)

There are two possibilities: either p4 = 0 either p4 ̸= 0.
If p4 = 0, these four terms (92,93,94,95) will be constant
along the path γ. However, if p4 ̸= 0 and if h is not con-
stant along γ, none of these four terms will be constant
along γ.

If p4 is not zero: Assuming p4 ̸= 0, we can re-
parametrize γ by its proper time. More precisely, above
we had γ = γ(τ) such that dγ(τ)/dτ = ∇S/mP for some

parameter τ . Doing so, (95) reads:∥∥∥∥dγ(τ)dτ

∥∥∥∥2
ĝ

=
p24
hm2

P

(96)

Let τ ′ be the proper time of γ for ĝ, i.e.:∥∥∥∥dγ(τ ′)dτ ′

∥∥∥∥2
ĝ

= c2 (97)

Assuming that dτ ′/dτ > 0, a straightforward calculation
using (96) and (97) shows that τ ′(τ) must satisfy:

dτ ′

dτ
=

p4
h1/2mPc

(98)

Using the proper time parametrization τ ′, the equation
of motion (87) becomes:

d2γk

dτ ′2
+ Γ̂k

ij

dγi

dτ ′
dγj

dτ ′
=−h3/2cĝjkωij

dγi

dτ ′
− 3

2
c2∂̂k lnh

+
3

2

d lnh

dτ ′
dγk

dτ ′
(99)

Remark that (99) does not depend on the auxiliary
Planck mass mP introduced above to match physical
units in (79). We can re-parametrize once more. Let τ ′′
such that:

dτ ′′

dτ ′
= h3/2

This is equivalent to take dτ ′′/dτ = hp4/(mPc). Us-
ing the parametrization τ ′′, the equation of motion (99)
becomes more simply:

d2γk

dτ ′′2
+ Γ̂k

ij

dγi

dτ ′′
dγj

dτ ′′
= −cĝjkωij

dγi

dτ ′′
− 1

2
c2∂̂k(h−3)

(100)
This is the simplest way to write the equation of motion
when p4 ̸= 0. In either parametrization τ , τ ′ or τ ′′, be-
cause p4 ̸= 0 and because of (95), the motion is timelike
in (Q̃, ĝ). This is compatible with the fact that we want
here to describe a massive particle.

If p4 is zero: Assuming p4 = 0, the equation of motion
(87) in terms of τ is:

d2γk

dτ2
+ Γ̂k

ij

dγi

dτ

dγj

dτ
=
d lnh

dτ

dγk

dτ
(101)

Because p4 = 0, it is not possible to re-parametrize by τ ′
or τ ′′ as above (unless we want to use the proper time of
a massive clock with p4 ̸= 0). We can, however, consider
the re-parametrization τ ′′′ such that:

dτ ′′′

dτ
= ah



12 Aubin-Cadot

for some real constant a ̸= 0. In this case, the equa-
tion of motion (101) becomes more simply the geodesic
equation in the 4D space (Q̃, ĝ):

d2γk

dτ ′′′2
+ Γ̂k

ij

dγi

dτ ′′′
dγj

dτ ′′′
= 0 (102)

Because p4 = 0 and because of (95), this geodesic is
lightlike in (Q̃, ĝ). This is compatible with the fact that
we want here to describe a massless particle.

Now that we have the equations of motion for both
cases p4 ̸= 0 and p4 = 0, there are two possible inter-
pretations for the equations of motion (99) and (102):

1. If we interpret p4 as being related to an electri-
cal charge, then up to an acceleration due to h,
the equation of motion (99) is the motion due to
electromagnetic Lorentz force. This is the usual
electromagnetic KK interpretation, originally mo-
tivated by an eventual unification of electromag-
netism with gravity (Kaluza 1921), (Klein 1926).

2. If we interpret p4 as being related to an effective
mass, but not to an electrical charge, then (99)
describes a motion due to a fifth force. This fifth
force is due to the KK dilaton field h and to the
KK Maxwellian field ω. The impact of ω on the
equation of motion of a point particle is a new
Lorentz force.

The second interpretation is the one taken in this present
document. Before jumping in the dark consequences of
the new hypothetical fifth force, let’s superficially skim
over the luminous electromagnetic interpretation of KK
theory and see what goes wrong with it.

9. EM INTERPRETATION OF KK THEORY
The original motivation for the KK theory was to

unite electromagnetism and gravity inside one tensor to
rule them all. Suppose here that h is constant. Then,
the HE action integral (59), the Einstein field equation
(63), the energy-momentum tensor (66) and the equa-
tion of motion (99) respectively become:

SHE[ĝ, β̃]=

∫
Q̃

(
1

2κ
R̂+

h3

8κ
∥ω∥2ĝ

)
Ωĝ (103)

Ĝij =κT̂ij (104)

T̂ij =
h3

2κ

(
ĝklωikωjl −

1

4
ĝij∥ω∥2ĝ

)
(105)

d2γk

dτ ′2
+Γ̂k

ij

dγi

dτ ′
dγj

dτ ′
= −h3/2cĝjkωij

dγi

dτ ′
(106)

The corresponding EM equations with the EM Maxwell
tensor Fij = ∂iAi − ∂jAj are respectively:

SHE[ĝ, A]=

∫
Q̃

(
1

2κ
R̂− 1

4µ0
∥F∥2ĝ

)
Ωĝ (107)

Ĝij =κT̂ij (108)

T̂ij =− 1

µ0

(
ĝklFikFjl −

1

4
ĝij∥F∥2ĝ

)
(109)

d2γk

dτ ′2
+Γ̂k

ij

dγi

dτ ′
dγj

dτ ′
=

q

m
ĝjkFij

dγi

dτ ′
(110)

There is a sign problem to identify (103,104,105,106)
with (107,108,109,110). This sign problem can be lifted
by changing the signature of g from (+,−,−,−,−) to
(+,−,−,−,+), e.g. as is done in (Williams 2015). Let’s
close our eyes on this issue. Up to signs headaches, we
must identify:

h3

8κ
∥ω∥2ĝ =

1

4µ0
∥F∥2ĝ (111)

h3/2cωij =
q

m
Fij (112)

This suggests to take a constant k such that F = kω.
The first equation (111) implies:

k = h3/2
√
µ0

2κ
(113)

Using (113) in the second equation (112), we get:

m =

√
q2µ0

2c2κ

For q the electrical charge e of a positron we get:

m =

√
α

2
mP (114)

where α = µ0

4π
e2c
ℏ ≈ 1

137 is the fine structure constant.
Hence, the mass (114) cannot be the mass of a particle
(e.g. electron, nucleon, etc.) because mP is ≈ 1020 too
heavy.

Now, the idea of this present document is that the
momentum in the fifth dimension does not represent an
electric charge but mass only. Doing so, we do not need
to rescale to F = kω or change the signature of g. Let’s
stay with the (+,−,−,−,−) metric (48) and keep ω.

10. MASS AS A MOMENTUM
Comparing (93):

∥p− p4β̃∥2ĝ = p24/h
3

to the classical definition of mass as the norm of a time-
like 4-momentum:

∥p∥2ĝ = (mc)2 (115)
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we get a relationship between the constant of motion p4,
the field h and the mass m:

p4 = h3/2mc (116)

This equation (116) is the precise mathematical formu-
lation of the mass = momentum hypothesis mentioned
in §1. Here I assume it to hold true even when β̃ ̸= 0:

∥p− p4β̃∥2ĝ = (mc)2 (117)

so that mass can be seen as a coupling to the field β̃.
Remark that the relationship (116) gives rise to a mass

operator m̂:

m̂c = h−3/2p̂4 = −iℏh−3/2∂4 (118)

This mass operator generalizes the one with h = 1

defined in (Aubin-Cadot 2018). Because we are in a
pseudo-Riemannian setting which is not necessarily a
flat Minkowskian one, there should be a divergence term
added in (118) as geometric quantization predicts (Sni-
atycki 1980), p.128. However, the mass operator is not
our focus here. I will shortly get back to it in §15.

For a given p4, the relationship (116) between m and
h seems to imply that the dilaton field h should be re-
lated to the Higgs field. In the EM interpretation of KK
theory, such a possible relationship between the dilaton
and the Higgs was mentioned in e.g. (Witten 1981),
p.425. In the present MMH interpretation of 5D KK
theory, I will discuss this possible relationship between
the dilaton and the Higgs in §14.

Because h ̸= 0, we know that p4 vanishes if and only if
m vanishes. Hence, the two scenarios p4 ̸= 0 and p4 = 0

in §8 were respectively the massive and the massless
scenarios.

In the massive scenario p4 ̸= 0, the equation of mo-
tion (99) parametrized by the proper time τ ′ in the 4D
spacetime (Q̃, ĝ) is independent of the precise numerical
value of p4. Because the mass m depends on the value
of the field h, the equivalence principle of GR must be
slightly reformulated so as to say that the motion due to
ĝ, h and β̃ is independent of the precise numerical value
of the constant of motion p4 ̸= 0.

In the massless scenario p4 = 0, the motion in the 4D
spacetime (Q̃, ĝ) is described by the geodesic equation
(102):

d2γk

dτ ′′′2
+ Γ̂k

ij

dγi

dτ ′′′
dγj

dτ ′′′
= 0

Thus, the motion of a massless particle is a lightlike
geodesic which is independent of h and β̃. Hence, the
fields h and β̃ do not affect the path of e.g. light. At
best, h will affect the phase of a lightlike geodesic, not
its 4D spacetime path.

Remark that there is a subtlety in the above men-
tioned equivalence principle. Although for p4 ̸= 0 the
motion due to ĝ, β̃ and h does not depend on the pre-
cise numerical value of p4, the motion does depend on
the fact that p4 ̸= 0.

Now that we have the desired definition (116) of mass
as a momentum and that we have the equations of mo-
tion in the 4D spacetime (Q̃, ĝ), we need to interpret the
fifth force due to β̃ and h.

11. THE RESULTING FIFTH FORCE AND
THE ROTATIONAL CURVE OF GALAXIES

In the above mentioned equivalence principle, there
is a clear distinction between the motion of a massive
point particle and that of a massless one. Massive par-
ticles are coupled to the fields h and β̃ while massless
particles aren’t. Because photons are massless, the fifth
force is invisible (gravity is visible because it bends 4D
lightlike geodesics). Because β̃ behaves like electromag-
netism, while not being electromagnetism, we already
have a good intuition of how β̃ behaves and how β̃ af-
fects matter. The effect of β̃ on matter is a Lorentz-like
force. The Lorentz force has two parts. Its first part is
the ”electric” part, which could be confused with usual
Newtonian gravitation. The other part is the ”mag-
netic” part, which could be confused with the gravito-
magnetic frame-dragging Lense–Thirring effect due to a
spinning body. However, being gravitational, the Lense-
Thirring effect has an impact on 4D lightlike geodesics,
while β̃ has no impact on them.

There is no observed fifth force at the quantum level,
nor at the scale of a planetary system. Thus, the fifth
force should be very weak. For example, its impact on
the precession of Mercury’s perihelion should fit inside
the tiny relative error between observation and GR’s
predicted value. This suggests that the fifth force should
manifest itself at scales at least as big as a galaxy or the
cosmos.

Consider a poor man’s point particle galaxy where
all its mass M lies at the origin (0, 0, 0). The module
of the Newtonian gravitational acceleration of a non-
relativistic test particle orbiting around the galaxy is
a = GM/r2. Assuming that the test particle follows a
circular orbit, its orbital speed is v(r) =

√
GM/r. How-

ever, physical observations tells us that the observed
orbital speed v(r) is not ∝ 1/

√
r but often roughly

v(r) ∝ const.. Even a rich man’s thick disc-shaped
galaxy does not solve this problem.

Dark matter is a hypothetical matter whose Newto-
nian gravitational effect solves the v(r) ≈ const. prob-
lem. However, dark matter particles were never de-
tected. There are various theoretical alternatives to the
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dark matter hypothesis (Mannheim 2006). This is where
the fifth force due to β̃ and h comes in.

First, let’s look only at the effect of ω = dβ̃. Let’s
call the ”magnetic” part of ω dork magnetism to dis-
tinguish it from conventional magnetism and also from
the already defined dark magnetism (Jiménez & Maroto
2011). The speed of a massive non-relativistic test parti-
cle following a circular orbit due to a dork magnetic field
Bz ∝ 1/r is v(r) ≈ const.. Thus, the rotational curve of
a galaxy could be explained in terms of dork magnetism.
Let’s call this the dork magnetic explanation of the rota-
tional curves of galaxies (DMEOTRCOG). Because the
field ω behaves like a Maxwellian field, we know how to
”activate” such a dork magnetic field Bz ∝ 1/r. All is
needed is a strong enough spin density inside the galaxy.
Such a spin density would come from all the spinning
constituents of the galaxy, e.g. planetary systems, stars,
planets, fidget spinners, etc.. Appart from a needed
fifth dimension, such a DMEOTRCOG is somewhat bet-
ter than its classical magnetic explanation (Battaner &
al. 1992) because it affects all the massive constituents
of the galaxy, not just its ionized constituents. How-
ever, such a DMEOTRCOG would probably be dis-
mantled by e.g. (Persic & Salucci 1993) regarding the
dynamic of two neighbouring galaxies. Moreover, be-
cause dork magnetism does not affect the path of light,
the DMEOTRCOG is incompatible with the empirical
observation of dark matter filaments (Epps & Hudson
2017). Also, it might be easier to invoke merely Lense-
Thirring effect (Bruskiewich 2001) instead of dork mag-
netism to explain the rotational curve of a galaxy com-
posed of, say, one mole of fidget spinners. To sum it
up, β̃ might not be the best candidate to explain the
rotational curve of galaxies.

Could h be taken responsible for the rotational curve
of galaxies? The non-relativistic acceleration of a point
particle due to h on a flat spacetime (Q̃, ĝ) = (R4, η)

with β̃ = 0 is given by (99):

d2γk

dτ ′2
= −3

2
c2∂̂k lnh+

3

2

d lnh

dτ ′
dγk

dτ ′
(119)

Assuming that h = h(r) and that the orbit is circular,
h is constant along the orbit so that (119) becomes:

d2γk

dτ ′2
= −3

2
c2∂̂k lnh (120)

Here, ∂̂k = ηkj∂j . The radial acceleration is then:

a ∝ ∂k lnh

Thus, to get the galactic orbital speed v(r) ∝ const. we
must take h(r) ∝ 1/r. Doing so, according to (116),

the mass of particles with a given p4 will vary inside the
galaxy along the radius r:

m(r) ∝ h(r)−3/2 ∝ r3/2

Hence, particles are heavier far from the center of the
galaxy. In particular, this should imply that the Higgs
varies quite a lot at the scale of a galaxy. However,
once again, explaining the rotational curve of galaxies
in terms of h is not compatible with the observation of
dark matter filaments. Indeed, h does not affect the
path of light.

Now that h and β̃ are failing to explain the rotational
curves of galaxies, mostly because of dark matter fila-
ments, let’s forget about dark matter. The never ob-
served point particle dynamic predicted by h in (99) is,
at least in an EM interpretation of KK theory, problem-
atic (Gegenberg & Kunstatter 1984), (Kovacs 1984).
For this reason, I suggest here a mathematical twist to
the usual KK theory to get rid of it.

12. GETTING RID OF THE DILATON FIELD
In usual 5D KK theory lies a fixed background space-

like Killing vector field v of (Q, g). The dilaton field
h : Q→ R>0 was defined in (43) as h2 := −∥v∥2g. When
doing variations of g in the HE action integral, the dila-
ton h varies too. Doing so, the dilaton is part of the
5D EFE and also contributes to the derived 4D Lorentz
force coming from the 5D geodesic equation. As men-
tioned at the end of §11, the point particle dynamic due
to this dilaton is known to be problematic. I will now
suggest a way to get rid of the dilaton field.

Let Q be a smooth real 5-manifold. Let TQ be the
tangent bundle of Q and let Fr(Q) be its tangent frame
bundle. Explicitly, at each x ∈ Q we have:

Frx(Q) := {f ∈ Isomorphisms(R5;TxQ)}

The frame bundle Fr(Q) is a right GL(5;R)-principal
bundle on Q. The right group action of λ ∈ GL(5;R)
on f ∈ Fr(Q) is the composition f ◦ λ. Let (ei) be the
canonical basis of R5:

e0 =



1

0

0

0

0


, e1 =



0

1

0

0

0


, e2 =



0

0

1

0

0


, e3 =



0

0

0

1

0


, e4 =



0

0

0

0

1


Let (ei) be the canonical dual basis defined as ei(ej) :=
δij . On R5 lies a canonical 5D Minkowski metric:

η = e0 ⊗ e0 − e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 − e4 ⊗ e4 (121)
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Choosing a (+,−,−,−,−) metric g on Q is equivalent
to do a O(1, 4) structural reduction FrO(1,4)(Q) ⊂ Fr(Q)

of the tangent frame bundle via the correspondence:

FrO(1,4)
x (Q) = {f ∈ Frx(Q) : gx(f(·), f(·)) = η(·, ·)}

The bundle FrO(1,4)(Q) is a right O(1, 4)-principal bun-
dle on Q.

Now, instead of defining a background spacelike vector
field v on Q independently of g, we can define v and g at
the exact same time. Consider this subgroup inclusion:

O(1, 3) =

O(1, 3) 0

0 1

 ⊂ O(1, 4) ⊂ GL(5,R)

Doing so, e4 ∈ R5 is O(1, 3)-invariant. Let’s choose
some O(1, 3) structural reduction FrO(1,3)(Q) ⊂ Fr(Q).
The bundle FrO(1,3)(Q) is a right O(1, 3)-principal bun-
dle on Q. This structural reduction induces both a
(+,−,−,−,−) metric g and a spacelike vector field v

on Q pointwise defined as:

gx(·, ·) := η(f−1(·)f−1(·)) (122)
vx := f(e4) (123)

for any f ∈ FrO(1,3)
x (Q). These definitions do not de-

pend on the choice of f ∈ FrO(1,3)
x (Q) because e4 and

η are both O(1, 3)-invariant. The structural reduction
FrO(1,3)(Q) induces also a right O(1, 4)-principal bundle
on Q:

FrO(1,4)
x (Q) := {f ◦ λ : f ∈ FrO(1,3)

x (Q), λ ∈ O(1, 4)}

This last O(1, 4) bundle on Q also corresponds to the
metric g on Q. Now, something magical happens. The
dilaton field h is automatically set to be constant and
equal to 1. Indeed, for any f ∈ FrO(1,3)

x we have:

h(x)2=−∥vx∥2g
=−gx(vx, vx)
=−η(f−1(f(e4)), f

−1(f(e4)))

=−η(e4, e4)
=1

This way of seeing things is different than in usual
KK theory. In usual KK theory, variations of the met-
ric g are done with a fixed background v. This amounts
to look at variations of a O(1, 4) structural reduction
of Fr(Q) with a fixed background v. The way I pre-
sented here consists instead to look at variations of a
O(1, 3) structural reduction of Fr(Q). In particular, v
becomes part of the variational principle. However, I
do not have an action integral defined on such O(1, 3)

structural reductions at hand. For this reason, I will
stay with the usual KK theory where v and g are kept
independent. Thus, there is a non-constant dilaton field
h. Doing so, choosing g amounts to do a first structural
reduction FrO(1,4)(Q) ⊂ Fr(Q). Then, reducing further
FrO(1,3)(Q) ⊂ FrO(1,4)(Q) amounts to define a spacelike
vector field u such that ∥u∥2g = −1 defined as:

u = f(e4) (124)

for any section f of the bundle FrO(1,3)(Q). Then, the
spacelike Killing vector field v on (Q, g) can be seen as
being:

v = hu (125)

for a R>0-valued function h on Q. Doing so, the re-
lationship between the spacelike vector field v and the
dilaton h is the same as (43):

h2 = −∥v∥2g (126)

Remark that choosing the unitary vector field u, i.e.
choosing the reduction FrO(1,3)(Q) ⊂ FrO(1,4)(Q) is
equivalent to choose a section of the de Sitter bundle
FrO(1,4)(Q)/O(1, 3) over Q whose typical fiber is the de
Sitter space O(1, 4)/O(1, 3) = S3 × R.

Now, let’s investigate similarities between the dilaton
field h and the Higgs field.

13. THE MASS OF THE DILATON FIELD
The Higgs field ϕ is a C2-valued field that gives mass

to some gauge fields and some matter fields (Hamil-
ton 2015). This given mass is proportional to ∥ϕ∥E :=√
ϕ†ϕ. The standard Euclidean norm ∥ · ∥E on C2 can

be seen as coming from the standard (+,+,+,+) Eu-
clidean scalar product ⟨·, ·⟩E on R4 = R⟨e1, e2, e3, e4⟩:

⟨·, ·⟩E = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4 (127)

Because of the so-called mexican hat potential:

V (Φ) = −1

2
µ∥ϕ∥2E +

1

2
λ∥ϕ∥4E

for µ, λ > 0, the vacuum expectation value for ∥ϕ∥E is
a non-vanishing positive constant rH :=

√
µ/2λ > 0.

Doing so, ϕ is expected to take values in a standard
3-sphere S3 ⊂ R4 of radius rH. After an appropriate
U(1) × SU(2) gauge transformation, the (C2 = R4)-
valued Higgs field ϕ can be set to look like:

ϕ = ∥ϕ∥Ee4 (128)

When the field ϕ is excited, the module ∥ϕ∥E can fluctu-
ate around its expected radius rH. This little fluctuation
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of the Higgs field around its vacuum expectation value is
the Higgs boson. The field equation for the Higgs boson
is a KG equation. This KG equation follows from ap-
proximating the field equation of ϕ around its vacuum.
The mass term in the Higgs boson’s KG equation is the
mass of the Higgs boson.

We can follow a similar argument with the dilaton field
h. The field equation for the field h is given by (72):

□̂ lnh = −1

4
h3∥ω∥2ĝ

Because h is R>0-valued, we can write h as h = eν for
some R-valued function ν. Thus, (72) becomes:

□̂ν = −1

4
e3ν∥ω∥2ĝ (129)

We do not have a potential for ν that sets its vacuum
expectation value. Such an eventual potential would
correspond, for example, to a potential that sets the vac-
uum expectation value of the metric g to a Minkowski
metric η. Let’s nevertheless suppose that the vacuum
expectation value of ν is some function ν0 that satis-
fies (129). Let’s consider a small fluctuation ν1 ≪ 1 so
that ν = ν0 + ν1. Then, (129) implies that the small
fluctuation ν1 satisfies:

□̂ν1 ≈ −3

4
e3ν0∥ω∥2ĝν1 (130)

Comparing (130) to the KG equation:

□̂ν1 = −
(mc

ℏ

)2

ν1

we see that the fluctuation ν1 has a mass m given by:

m =

√
3ℏ
2c

e(3/2)ν0∥ω∥ĝ

The mass term m here is not the mass of the dilaton
h = eν but of the fluctuation ν1. This mass is defined via
the KG equation, not via the MMH. The MMH cannot
define a mass for ν1 because it would contradict the
cylindrical hypothesis.

Now, let’s dig further in the analogy between the dila-
ton and the Higgs.

14. THE DILATON AND THE HIGGS
The (+,+,+,+) Euclidean space (C2 = R4, ⟨·, ·⟩E)

mentioned in §13 in which the Higgs field ϕ takes
values can be seen as the Euclidean subspace of the
(+,−,−,−,−) space (R5, η) mentioned in §12 via the
subspace injection:

R4→R5 (131)
(x1, ..., x4) 7→ (0, x1, ..., x4)

Doing so, the basis vector e4 = (0, 0, 0, 1) of R4 is iden-
tified with the basis vector e4 = (0, 0, 0, 0, 1) of R5 and
the bilinear forms (121) and (127) are related as:

η = e0 ⊗ e0 − ⟨·, ·⟩E (132)
From (124,125,126) we can write the spacelike vector
field v on (Q, g) as:

v = hu =
√

−∥v∥2gf(e4) (133)

where f is any section of FrO(1,3)(Q) ⊂ FrO(1,4)(Q).
From (128,132), the evaluation of f on the Higgs field ϕ
is also a spacelike vector field on Q:

f(ϕ) = f(∥ϕ∥Ee4) = ∥ϕ∥Ef(e4) =
√

−∥ϕ∥2ηf(e4)
(134)

Comparing (133) and (134), it seems like h and ∥ϕ∥E
play a similar role as being the norm of some vec-
tors. Thus, the relationship between the dilaton and
the Higgs mentioned back in §10 regarding their influ-
ence on masses is not only scalar but also vectorial.

Now, one could complain because the Higgs, a spin
0 field, is now identified with a vector field and vector
fields are known to be spin 1. But, there is no problem.
Vector fields on Q̃ = Q/R are spin 1 because of how
the Lorentz group O(1, 3) act on them. Because the
Higgs is identified with v = hf(e4) on Q and because
e4 is invariant under the action of O(1, 3) < O(1, 4), the
Higgs has spin 0.

The identification (131) of the (+,+,+,+) space C2 =

R4 in which the Higgs lives and the (+,−,−,−,−) space
R5 does not simply relate the Higgs to the dilaton. It
expresses the electroweak structural group U(1)×SU(2)

as a subgroup of the structural group GL(5;R) of the
tangent frame bundle Fr(Q):

U(1)×SU(2) < O(4) =

1 0

0 O(4)

 < O(1, 4) < GL(5;R)

Let’s define ten 5× 5 real matrices:

K1 =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


K2 =



0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0



K3 =



0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0


K4 =



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0
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J12 =



0 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0


J23 =



0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0



J13 =



0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0


J14 =



0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0



J24 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0


J34 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0


For 1 ≤ i < j ≤ 4, the commutator of two boosts Ki

is an infinitesimal rotation [Ki,Kj ] = Jij . Let’s define
four more 5× 5 real matrices:

X0 :=−J13 − J24

X1 :=−J23 − J14

X2 :=J12 + J34

X3 :=−J13 + J24

They satisfy:

[X0, X1]=0 [X1, X2] = −2X3

[X0, X2]=0 [X3, X1] = −2X2

[X0, X3]=0 [X2, X3] = −2X1

Thus, we have:

so(1, 4)=R⟨K1,K2,K3,K4, J12, J13, J14, J23, J24, J34⟩
so(1, 3)=R⟨K1,K2,K3, J12, J13, J23⟩ < so(1, 4)

so(4)=R⟨J12, J13, J14, J23, J24, J34⟩ < so(1, 4)

u(1)=R⟨X0⟩ < so(4)

su(2)=R⟨X1, X2, X3⟩ < so(4)

Evaluating the basis elements of u(1) ⊕ su(2) on the
Higgs ϕ = ∥ϕ∥Ee4 ∝ e4 we have:

X0e4=−e2
X1e4=−e1
X2e4= e3

X3e4= e2

In particular, we have:

(X0 +X3)e4 = −e2 + e2 = 0

Identifying electromagnetism with the diagonal element
X0 + X3 ∈ u(1) ⊕ su(2), electromagnetism is not cou-
pled to the Higgs ϕ ∝ e4. Albeit being done in a R5

representation and not in a more common C2 one, this
is the usual electroweak way of dealing with the fact that
photons are massless. Now, despite the above relation-
ship between the dilaton and the Higgs via the vector
field v, the electroweak way to give mass via the Higgs
is different than the above MMH way of seing mass as a
momentum in the direction spanned by the vector field
v. I do not have a remedy at hand to cure this discrep-
ancy of geometrical mechanisms to define mass. Thus,
let’s move on.

We have a vector space split:

so(1, 4) = so(1, 3)⊕ so(1, 4)

so(1, 3)
(135)

where:
so(1, 4)

so(1, 3)
= R⟨K4, J14, J24, J34⟩

This splitting is Ad(O(1, 3))-invariant. Let’s define:

g :=Lie(O(1, 4)) = so(1, 4)

h :=Lie(O(1, 3)) = so(1, 3)

p :=g/h = R4

Thus, the splitting (135) becomes more simply:

g = h⊕ p (136)

In terms of algebra, we have [g, g] = g, [h, h] = h, [h, p] =
p and [p, p] = h. Via left multiplication of the above ma-
trices by the 5×5 matrix [ηij ] = Diag(1,−1,−1,−1,−1)

we can identify g = ∧2R5, h = ∧2R4 and p = ∧1R4.
Thus, the splitting (136) can be seen as:

∧2R5 = ∧2R4 ⊕ ∧1R4 (137)

The Hodge star operator ⋆ on ∧2R4, for R4 Minkowskian,
satisfies ⋆2 = −1 so that we have a natural complex
structure J induced on the Lie algebra h.

Now, let’s consider a connection formA on the O(1, 4)-
principal bundle FrO(1,4)(Q). This connection form A

is, by definition, g-valued. Because of the vector space
splitting (136), the connection form A splits as a sum of
a h-valued 1-form and a p-valued 1-form:

A = Ah +Ap

Restricting these three 1-forms to the subbundle
FrO(1,3)(Q), we get three 1-forms:

α = αh + αp
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The 1-form αh is a connection form on FrO(1,3)(Q) while
the 1-form αp is a basic 1-form that goes down to a p-
bundle-valued 1-form. Such a decomposition was con-
sidered in (Wise 2007) to express the 4D HE action and
its corresponding 4D EFE in terms of a Yang-Mills-ish
theory via the above correspondence between algebra
and n-forms. However, in the 4D context of (Wise 2007),
the use of so(1, 4) seems a bit ad hoc while it is natural
in a 5D KK context.

Thus, it seems like a 5D KK context could be a good
context to unite YM and GR. This is wildly different
than the usually suggested non-abelian KK context with
structural group G (Kerner 1968), (Witten 1981), (Bott
1985). Also, above the Higgs was related to the vector
field v, not to an internal component of a gauge field as in
e.g. (Manton 1979), (Panico & al. 2006). Also, remark
that the idea of embedding the electroweak structural
group U(1) × SU(2) inside the structural group of the
tangent frame bundle Fr(Q) in a 5D KK context was
already mentioned back in (Salam & Strathdee 1982),
p.347.

Now, as a reminder, the original aim of this present
document is not to unite either the Higgs with gauge
fields nor unite gauge fields with gravity. The original
aim is merely to see mass as a momentum. Doing so,
we came upon gauge fields considerations because of the
dilaton / Higgs analogy. Now, let’s get back to mass as
a momentum.

15. NEGATIVE MASSES, INVISIBLE
FIFTH DIMENSION AND ALL THAT

One key feature of the mass = momentum hypothesis
(116):

p4 = h3/2mc

is that mass can be negative. Suppose that an electron
e− and a positron e+ are annihilated in two photons γ:

e− + e+ ⇝ γ + γ

In the right hand side, each photon γ has a vanishing
mass so that the right hand side has a vanishing total
p4. Because of momentum conservation, the left hand
side must also have a vanishing total p4. Because the
electron has a positive mass, it follows that the positron
has a negative mass.

Denote bym− > 0 the mass of the electron and q− < 0

its electric charge. Denote by m+ = −m− < 0 the mass
of the positron and q+ = −q− > 0 its electric charge.

According to (99), when β̃ = 0 and h = 1, the equa-
tion of motion of a massive point particle parametrized
by its proper time τ ′ in spacetime (Q̃, ĝ) is:

d2γk

dτ ′2
+ Γ̂k

ij

dγi

dτ ′
dγj

dτ ′
= 0 (138)

In this equation, there is no EM Lorentz force. Adding
it by hand to (138) we get the equation of motion of
an electrically charged particle of mass m and electric
charge q:

d2γk

dτ ′2
+ Γ̂k

ij

dγi

dτ ′
dγj

dτ ′
=

q

m
ĝjkFij

dγi

dτ ′
(139)

Thus, the equations of motion of the electron and of the
positron are respectively:

d2γk−
dτ ′2−

+ Γ̂k
ij

dγi−
dτ ′−

dγj−
dτ ′−

=
q−
m−

ĝjkFij
dγi−
dτ ′−

(140)

d2γk+
dτ ′2+

+ Γ̂k
ij

dγi+
dτ ′+

dγj+
dτ ′+

=
q+
m+

ĝjkFij
dγi+
dτ ′+

(141)

Assuming that:
dτ ′−
dτ ′+

= −1 (142)

we can reformulate (141) as:

d2γk+
dτ ′2−

+ Γ̂k
ij

dγi+
dτ ′−

dγj+
dτ ′−

= − q−
m−

ĝjkFij
dγi+
dτ ′−

(143)

Thus, comparing (140) and (143), we see that the dy-
namic of the positron is the expected dynamic of a
positron. Hence, there is no immediate problem with
having a positron of negative mass. However, this is at
the cost of assuming that the proper time of the electron
and the proper time of the electron are related as (142).
Nevertheless, this change of sign of the proper time τ ′
was already predicted by (98):

dτ ′

dτ
=

p4
h1/2mPc

Changing the sign of p4 amounts to change the sign of
the evolution of the proper time τ ′. Thus, changing
the sign of mass m amounts to change the sign of the
evolution of τ ′, as was done in (141).

When β̃ = 0, (82) becomes:

p4 = −h2mP
dx4

dτ
(144)

Comparing (98) to (144) we get a relationship between
proper time τ ′ and the x4 coordinate:

cdτ ′ = −h3/2dx4 (145)

Thus, up to sign and scaling by h, the proper time τ ′
corresponds to the fifth dimension x4 and mass is its
corresponding momentum. Letting ds = cdτ ′, the rela-
tionship (145) implies:

ds = −h3/2dx4 (146)
∂s = −h−3/2∂4 (147)
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Thus, the mass operator (118) we found in §10:

m̂c = −iℏh−3/2∂4 (148)

matches, up to a sign, the conjectured mass operator (3)
of §1:

m̂c = −iℏ∂s
If one wants at all cost to match the signs of these two
mass operators, then one would need to change either
the sign in (79) either change the sign in (98). Re-
writing all the above equations with such a different sign
convention is left as an exercise.

The idea of defining a mass operator is not new and
lies here and there within the KK literature, see e.g.
(Witten 1981) p.420, (Salam & Strathdee 1982) p.350-
351. However, the effective mass found in the KK liter-
ature is often an effective mass coming from the electric
charge. Doing so, an electrically neutral particle has a
vanishing mass unless a non-vanishing µ is considered in
the 5D KG equation (73) as was done in e.g. (Souriau
1962). Above, mass was defined in terms of p4, indepen-
dently of any notion of electrical charge.

Remark that a genuine mass squared operator was
defined in (Sniatycki 1980), p.174, via geometric quan-
tization procedures. This is done in a 4D KG context
without the need for a fifth dimension. In this mass
squared operator, there is a scalar curvature term R/6.
Such an added scalar curvature is related to an eventu-
ally added ”divergence term” in the mass operator (118),
as mentioned back in §10. So, the mass operator (118)
should still be tweaked a little bit.

Now, there is a physical day to day issue with the ex-
istence of a fifth dimension, namely that we do not see
such a dimension. Historically (Klein 1926), the fifth di-
mension was thought to be a tiny circle S1 whose length
is roughly the Planck length ℓP :=

√
ℏG/c3 ≈ 10−35m.

While this is the right length to get the EM interpreta-
tion of KK theory, it leads to masses being ≈ 1020 too
heavy as described in §9. Hence, such a tiny circle is
discarded. Instead, this fifth dimension could be a circle
S1 whose length lies between a millimeter and a meter.
This the size considered in (Arkani-Hamed et al. 1998),
(Dienes & al. 1998), (Appelquist et al. 2001).

Here is another possible motivation for such a size.
Our Universe is filled with an omnipresent ambiant
bath of photons called the cosmic microwave background
(CMB). This background radiation has the spectrum of
a cold radiating black body at TCMB ≈ 2.725K. Us-
ing Wien’s displacement law λCMB = b/TCMB, where
b ≈ 2.898 × 10−3 m · K is Wien’s constant, the CMB’s
peak wavelength λCMB is roughly 1.063 mm long. The
CMB is supposed to come from a distant past. Because
of the equipartition theorem, the CMB should spread its

energy equally in the (x, y, z) directions and in the s di-
rection. Thus, the CMB’s spectrum should be the same
all over (x, y, z, s). If the CMB’s spectrum is indeed
related, via Fourier modes, to a finite length or thick-
ness of the fifth dimension s, then this length should be
scaled in, say, decimeters. Although such an eventual
relationship between the CMB and the length of the fifth
dimension is compatible with the standard electroweak
/ Higgs picture, it is incompatible with the MMH pic-
ture. Indeed, suppose that the CMB’s spectrum is the
same all over (x, y, z, s). Then, the CMB’s photons will
have a non-vanishing momentum p4 and hence a non-
vanishing mass, which is not true. Thus, the bad news
is that according to the MMH, the CMB’s spectrum has
nothing to do with the length of the fifth dimension.
But, the good news is that we now know why we do not
see the fifth dimension.

In the MMH picture, photons have a vanishing p4. Be-
cause they have a vanishing p4, we do not see the fifth
dimension. Moreover, back in §8, 4D timelike motion
corresponds to 5D lightlike motion so that massive par-
ticles move at the speed of light in the 5D space, mostly
in the direction of proper time τ ′ ∝ x4. Thus, because
matter is moving at the speed of light mostly towards
the fifth dimension, there is no reason why we would
see such a fifth dimension. Hence, it is not necessary to
compactify the fifth dimension to a circle S1 to hide it.
We can keep it as being R, as was done in §6.

In §8, 5D lightlike geodesics were the light rays of the
WKB wave ψ = eiS/ℏ on (Q, g) satisfying the 5D wave
equation Dψ = 0. Let’s consider (Q, g) = (R5, η). If a
signal is emitted at the origin (x0, ..., x4) = (0, ..., 0), its
propagation corresponds to a light cone inside R5. At
each time t = x0/c, the signal propagates as a wavefront
S3 ⊂ R4 centered at (x1, ..., x4) = (0, ..., 0) of radius
ct = x0. The points of the wavefront S3 propagate along
radial light rays in R4. Suppose that us lightlike bipeds
lie on the wavefront S3 expanding at the speed of light.
Then, we would see an expanding S3 that we could call
the cosmos. Now, let’s rewind time. The cosmos goes
back to a single singular point, the Big Bang. But, there
is not really a singularity because the WKB approxima-
tion cease to be valid at the caustic. In any case, such
an expanding cosmic wavefront theory is not compatible
with the KK cylindrical hypothesis. In particular, mass
would not be a constant of motion. So we need another
picture.

Let’s consider again (Q, g) = (R5, η). Suppose that we
are propagating in the ∂4 direction so that the cylindri-
cal condition is satisfied. Recall from §1 that the main
motivation for the MMH was the relationship between
the 4D KG equation (1) and the 5D wave equation (2).
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For these two equations to be equivalent, we had to sup-
pose that ψ is an eigenfunction of the mass operator m̂.
This, in return, implies that ψ is monochromatic along
the fifth dimension:

ψ(x0, ..., x4) = ψ(x0, ..., x3)e±imcx4/ℏ

This implies that ψ has an infinite extent in the fifth di-
mension. Thus, all matter has an infinite extent in the
fifth dimension. This does not seem realistic. However,
if we suppose instead that matter has a finite extent in
the fifth dimension, things get worse. Because matter
propagates in the direction ∂4 and because photons are
propagating along constant slices x4 = const., much of
the emitted photons are lost behind the matter wave-
front propagating in the fifth direction. These photons
are lost, forever. This is not physical either. Thus, it
seems, the fifth dimension cannot be R but should be a
circle S1.

Let’s consider (Q = R4 × S1, g). Suppose that we are
propagating in the S1 direction and that the cylindrical
condition is satisfied along this circle. Now, something
strange is happening. Because of the identification of
4D timelike geodesics with 5D lightlike geodesics, we
can identify 4D timelike dust with 5D lightlike dust.
In particular, a static galaxy (i.e. a static 4D timelike
dust) corresponds to a 5D beam of lightlike dust prop-
agating along the circle S1. Two neighbouring roughly
static galaxies correspond to two nearly parallel beams
of lightlike dust. In a 4D setting, it was shown by (Bon-
nor 1969) that there is no gravitational attraction be-
tween two parallel beams of lightlike dust. The same
argument applies in a 5D setting. Thus, there should be
roughly no gravitational attraction between two neigh-
bouring roughly static galaxies. This seemingly absence
of gravity between neighbouring timelike galactic dust
applies not only to galaxies, but to all timelike dust, pro-
vided that it is static enough so that the corresponding
5D beams are parallel enough. Gravity in a 5D setting
is often surprising. For example, gravity seems to disap-
pear in a 5D KK magnetic monopole context (Gross &
Perry 1983). For other problems regarding 5D gravity
see e.g. (Coquereaux & Esposito-Farese 1990).

As a last encouraging remark, note that in a 5D
setting instead of a 4D setting, (Bonnor 1969)’s po-
tential (5.1) ∝ ln(r) solution to its Poisson equation
(4.7) (∂21 + ∂22)f(r) = 0 now becomes a more familiar
Coulomb potential ∝ 1/r solution to the Poisson equa-
tion (∂21 + ∂22 + ∂23)f(r) = 0. Doing so, even if there is
almost no gravitational acceleration between neighbour-
ing galaxies, these galaxies should nevertheless bend
light rays according to a Coulombian potential.

16. CONCLUSION
Because of the similarity between the 4D KG equa-

tion and the 5D wave equation, it was hypothesized that
mass is a momentum in a fifth dimension. Doing so, a
4D timelike motion corresponds to a 5D lightlike mo-
tion. This was done in a KK setting because of two rea-
sons. First, because there is already a lot of literature
regarding KK theory. Second, because the cylindrical
condition on the metric implies that p4 is a constant of
motion. Doing so, when the dilaton is constant, mass is
also a constant of motion.

In the 5D KK setting, there is a Maxwellian field ω and
a dilaton field h. In the present context, the Maxwellian
field is not interpreted as electromagnetism but as a new
force. These two fields, the Maxwellian and the dilaton,
were suggested to be responsible for the rotational curve
of galaxies. However, this is incompatible with the ob-
servation of dark matter filaments.

Despite a lacking potential on the dilaton, a notion
of mass for the dilaton field was derived. This mass
is proportional to the pointwise energy ∥ω∥ĝ of the
Maxwellian field ω. However, this mass is not compat-
ible with the MMH picture because it contradicts the
cylindrical hypothesis.

A possible link between the dilaton and the Higgs field
is mentioned here and there in the KK literature. Such a
link was discussed not only at a scalar level but also at a
vectorial level. Doing so, the electroweak gauge bundle
was seen as a subbundle of the 5D tangent frame bundle.
Despite the analogies between the dilaton and the Higgs,
the mechanism by which particles get their masses differ
in the MMH picture and in the Higgs picture.

The invisibility of the fifth dimension follows from the
fact that photons are massless. The global topology of
the fifth dimension should be a circle S1. Although no
precise length is suggested for this circle, it is quite clear
that it is not as small as the Planck length suggested by
the usual EM KK theory.

Assuming that mass is a momentum, it was shown
that positrons should have a negative mass. This fol-
lows from the conservation of momentum in the fifth
dimension. This negative mass does not contradict the
dynamic of the positron when it comes to the Lorentz
force.

According to the MMH, the energy-momentum tensor
of a 4D timelike dust should correspond to the energy-
momentum tensor of a 5D lightlike dust. Because of the
absence of gravity between parallel Bonnor lightlike dust
beams, it seems that there should be almost no gravity
between roughly static neighbouring galaxies. Neverthe-
less, because light propagates perpendicularly to matter
in the 5D space, these galaxies should bend light as ob-
served by a Coulombian potential.
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