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ABSTRACT
Starting from a general relativity setting, the goal of this document is to reach the flat Schrödinger equation. At

first, the spacetime metric g is minimally coupled to a real function S in the Hilbert-Einstein action integral. The
Euler-Lagrange equations corresponding to variations in g and in S are equivalent to the curved electromagnetically
charged Klein-Gordon equation of a WKB wave whose amplitude corresponds to a conformal transformation and
whose mass is defined in terms of scalar curvature. To reach the flat Schrödinger equation while keeping a constant
non-vanishing scalar curvature, it is suggested to hide the curvature inside the villi of some tessellation of space and
then to define an averaged flat metric. However, no metric solution is found solving the Einstein field equation inside
a single villus. The flat Schrödinger equation is not reached.
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1. INTRODUCTION
The theory of general relativity (GR) and the quan-

tum world are incompatible. For example, in some quan-
tum context, one might want to consider the flat Klein-
Gordon (KG) equation:

ηij∂i∂jψ = −
(mc

ℏ

)2

ψ (1)

However, GR tells us that this flat KG equation can-
not be entirely true. On the left hand side one finds

a flat Minkowski metric η. On the right hand side one
finds mass. GR tells us that mass curves spacetime.
So, the spacetime metric on the left hand side cannot
be a Minkowski metric. Worse, even if m = 0, the
energy-momentum tensor Tij due to ψ might not be
zero. Hence, even the flat wave equation:

ηij∂i∂jψ = 0 (2)

is not entirely physical. For the same reason, the flat
Schrödinger equation (FSE):

iℏ∂tψ = − ℏ2

2m

(
∂2x + ∂2y + ∂2z

)
ψ + eV ψ (3)

is problematic.
Generalizing the flat equations (1,2,3) to a curved

spacetime (M, g) can be done in different ways. A first
way is to substitute the flat d’Alembert operator ηij∂i∂j
by a Laplace-Beltrami-d’Alembert operator □. Doing
so, for example, the wave equation (2) would become:

□ψ = 0

A second way is to ask for conformal invariance (Pen-
rose 1964), (Chernikov & Tagirov 1968) or to ask that
the equations must follow from geometric quantization
procedures (Sniatycki 1980). Doing so, one would get
instead: (

□− 1

6
R

)
ψ = 0
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However, the challenge here is different. Instead of going
from flat to curved, the goal is to go from curved to flat.
More precisely, starting from a GR setting, the goal is
to reach the flat Schrödinger equation (3). Here is step
by step how this is to be done:

1. The GR setting to start with is the Hilbert-
Einstein action integral SHE[g, S] =

∫
( 1
2κR+L)Ωg

coupling the metric g to a real function S via the
Lagrangian density L = − 6

2κℏ2 ∥dS + eA∥2g. Here,
A is a fixed electromagnetic differential 1-form A.

2. The Euler-Lagrange equations are:

Rij =−6ℏ−2(∂iS + eAi)(∂jS + eAj) (4)
0=Div(∇S + eA♯) (5)

3. Tracing (4) with gij we get:

R = −6ℏ−2∥∇S + eA♯∥2g (6)

4. For a WKB wave ψ := eiS/ℏ with constant ampli-
tude and for □A the electromagnetically charged
Laplace-Beltrami-d’Alembert operator, we have
these real and imaginary components:

ℜ(ψ−1□Aψ)=−ℏ−2
∥∥∇S + eA♯

∥∥2
g

ℑ(ψ−1□Aψ)=ℏ−1Div
(
∇S + eA♯

)
Hence, the above two equations (5,6) are equiva-
lent to an electromagnetically charged version of
the conformally invariant massless wave equation:(

□A − 1

6
R

)
ψ = 0 (7)

5. Under a conformal transformation ĝ = e2φg and a
change of amplitude ψ̂ = e−φψ, we have:(

□̂A − 1

6
R̂

)
ψ̂ = e−3φ

(
□A − 1

6
R

)
ψ

Doing so, the equation (7) implies that the WKB
wave ψ̂ = ρeiS/ℏ with amplitude ρ = e−φ satisfies
this wave equation:(

□̂A − 1

6
R̂

)
ψ̂ = 0 (8)

6. Let’s define a constant rC := ℏ/(mc) and assume
that the scalar curvature R̂ is constant:

R̂ = − 6

r2C
(9)

Then, the equations (8,9) put together imply that
the WKB wave ψ̂ satisfies the KG equation:

□̂Aψ̂ = −
(mc

ℏ

)2

ψ̂ (10)

Hence, from the above somewhat arbitrary GR setting
we get the curved KG equation.

The last step to do is to go from the curved KG equa-
tion (10) to the FSE (3). A first approach would be to
take ĝ = η and a t-independent Ai = (V/c, 0, 0, 0) so
that the non-relativistic approximation of the KG equa-
tion (10) is, up to an energy shift E 7→ E − mc2, the
FSE (3):

iℏ∂tψ = mc2ψ − ℏ2

2m

(
∂2x + ∂2y + ∂2z

)
ψ + eV ψ (11)

However, this method does not work for us because for
ĝ = η the scalar curvature R̂ vanishes, which contradicts
the mass = curvature hypothesis (9).

A second approach would be to ”flatten” the space-
time metric ĝ on R4 = R×R3 by hiding its non-vanishing
constant scalar curvature R̂ inside the villi of a tessel-
lation of R3. Such a spatial folding in and out of R3

with constant spacetime curvature on R4 should be pos-
sible because ĝ is a pseudo-Riemannian metric, not a
Riemannian one. Doing so, ĝ and the tessellation would
give rise to an averaged flat metric ḡ on which the FSE
would be built. Physically, the WKB wave ψ̂ propagat-
ing on the villi would be periodically lensed by each vil-
lus. However, this second approach is drastically harder
to execute than the first approach. Indeed, here we need
to:

1. Tessellate R3, e.g. via cuboctahedrons.

2. Solve (4,5,9) inside R× (a single villus).

3. Extend this solution to the whole villi.

4. Define an averaged flat spacetime metric ḡ from ĝ.

5. Show that the non-relativistic approximation of
(10) averages via ḡ to the FSE (11).

In this document, only the second point will be ap-
proached, without success.

Outline: §2-3 are an adapted pot-pourri of standard
definitions listed in (Aubin-Cadot 2019) regarding Rie-
mannian geometry and general relativity. §4 gives var-
ious quantities corresponding to the above mentioned
Lagrangian. §5 re-does the steps above to go from a
GR setting to the KG equation (10), but with a slightly
slower pace and some added comments. §6 is a first
attempt to solve the Einstein equation via a 4D time-
independent Kaluza-Klein-style metric, without success.
§7 is a second attempt with a slightly different metric
as the one from §6, without success. §8 studies an equa-
tion that appeared both in §6 and §7. §9 concludes and
suggests an opening.
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2. RIEMANNIAN GEOMETRY
Let’s recall some standard definitions of Riemannian

geometry (Landau & Lifschitz 1971). Let (Q, g) be an
n-dimensional pseudo-Riemannian manifold. Consider
local coordinates (xi) on U ⊂ Q. Let ∂i := ∂/∂xi be
defined as dxi(∂j) = δij where δij equals 1 if i = j and 0
if i ̸= j. The metric g is locally written:

g|U = gijdx
i ⊗ dxj (12)

where gij := g(∂i, ∂j). Repeated indices are summed
over their range. Let gij be the coefficients of the inverse
matrix [gij ] := [gij ]

−1, i.e. δij = gikgkj . The Christoffel
symbols, the Riemann curvature tensor, the Ricci curva-
ture tensor, the scalar curvature and the Einstein tensor
of the metric g are respectively given by:

Γk
ij := (1/2)gkm(∂igjm + ∂jgim − ∂mgij) (13)

Rl
kij :=∂iΓ

l
jk − ∂jΓ

l
ik + Γl

imΓm
jk − Γl

jmΓm
ik (14)

Rij :=R
k
ikj = ∂kΓ

k
ij − ∂jΓ

k
ik + Γl

ijΓ
k
kl − Γl

ikΓ
k
jl (15)

R := gijRij (16)
Gij :=Rij − (1/2)Rgij (17)

The Riemannian musicality isomorphisms are:

♭ : TQ→T ∗Q

v = vi∂i 7→ v♭ := g(v, ·) = gijv
idxj

♯ := ♭−1 : T ∗Q→TQ

α = αidx
i 7→α♯ := gijαi∂j

Let:

∥v∥2g := g(v, v) = gijv
ivj

∥α∥2g := g(α♯, α♯) = gijαiαj

When a vector v and a 1-form α are mutually musical,
we have ∥v∥g = ∥α∥g. Let:

det[g] :=det[gij ]

|g| := |det[g]|
dnx :=dx1 ∧ .. ∧ dxn

Ωg := |g|1/2dnx

The Levi-Civita covariant derivative ∇i := ∇∂i
of ten-

sors on Q is given in local coordinates by the Leibniz
product rule and by:

∇if := ∂if ∇i(∂j) := Γk
ij∂k ∇i(dx

k) := −Γk
ijdx

j

On functions, one should not confuse the gradient vector
field of a function:

∇f := (df)♯

= gij(∂if)∂j

and the covariant derivative of a function:

∇f =df
=(∂if)dx

i

These two ∇ are not the same. For this reason, on ten-
sors ∇ will denote a covariant derivative but on func-
tions ∇ will denote the gradient. Also, as an abuse of
notation, the covariant derivative ∇T of a tensor T will
often be denoted ∇T i1...ip

j1...jq
. For example:

∇iFjk = ∂iFjk − Γl
ijFlk − Γl

ikFjl

The covariant Hessian of a function is:

Hij(f) := (∇df)(∂i, ∂j)
=
(
∂i∂j − Γk

ij∂k
)
f

The covariant divergence of a vector field v = vi∂i is
defined implicitly as:

Div(v) · Ωg = LvΩg

The covariant divergence is given explicitly as:

Div(v)=∂iv
i + viΓk

ik

= |g|−1/2∂i

(
|g|1/2vi

)
In particular, we have:

Div(∂i) = Γk
ik = |g|−1/2∂i

(
|g|1/2

)
For α a differential 1-form we have:

Div(α♯) = gij(∂iαj − Γk
ijαk)

The Laplace-Beltrami operator acting on functions is:

∆f :=Div(∇f)
= gij

(
∂i∂j − Γk

ij∂k
)
f

= gijHij(f)

On functions, the Laplace-Beltrami operator equals
minus the Laplace-de Rham operator, i.e. ∆LBf =

−∆LdRf where ∆LdRf := δdf where δ is the Hodge
codifferential. Here ∆ will always denote ∆LB.

In a (+,−,−,−) pseudo-Riemannian setting, ∆ is
denoted by the d’Alembertian operator □. In such a
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(+,−,−,−) setting, for A = Aidx
i a real differential

1-form and for e and ℏ some physical constants, let:

Dj :=∂j + i
e

ℏ
Aj

□Af := g
ij(DiDj − Γk

ijDk)f

= |g|−1/2Di

(
|g|−1/2gijDjf

)
In a (+,−,−,−,−) pseudo-Riemannian setting, ∆ is de-
noted by the Souriau operator D and DA can be simi-
larly defined.

Let γ(λ) be a parametrized curve in (Q, g) and denote
by a dot the derivative d/dλ. γ is said to be a geodesic of
(Q, g) if it satisfies the geodesic equation γ̈k +Γk

ij γ̇
iγ̇j =

0. γ is said to be an integral curve of a vector field v if it
satisfies the integral curve equation γ̇ = v ◦ γ. γ is said
to be a gradient curve of a function f if it is an integral
curve of the gradient vector field ∇f , i.e. γ̇ = (∇f) ◦ γ.
A vector field v ∈ X(Q) is a Killing vector field of g if
Lvg = 0.

Under a conformal rescaling ĝ = e2φg we have:

ĝij = e
2φgij

ĝij = e−2φgij

Γ̂k
ij =Γk

ij + δki ∂jφ+ δkj ∂iφ− gij∇kφ

R̂ij =Rij − (n− 2) (Hij(φ)− (∂iφ)(∂jφ))

−
(
∆φ+ (n− 2)∥dφ∥2g

)
gij

R̂= e−2φ[R− 2(n− 1)∆φ

−(n− 2)(n− 1)∥dφ∥2g]

|ĝ|1/2= enφ|g|1/2

Ωĝ = e
nφΩg

R̂Ωĝ = e
(n−2)φ[R− 2(n− 1)∆φ

−(n− 2)(n− 1)∥dφ∥2g]Ωg

α♯̂= e−2φα♯

v♭̂= e2φv♭

∥v∥2ĝ = e2φ∥v∥2g
∥α∥2ĝ = e−2φ∥α∥2g

D̂iv(v)=Div(v) + ndφ(v)

D̂iv(α♯̂)= e−2φ(Div(α♯) + (n− 2)α(∇φ))
∇̂f = e−2φ∇f
∆̂f = e−2φ(∆f + (n− 2)(df)(∇φ))

In a (+,−,−,−) pseudo-Riemannian setting, we have:(
□̂− 1

6
R̂

)
(f)= e−3φ

(
□− 1

6
R

)
(eφf)(

□̂A − 1

6
R̂

)
(f)= e−3φ

(
□A − 1

6
R

)
(eφf)

3. GENERAL RELATIVITY
Let’s recall some standard definitions of general rel-

ativity (Landau & Lifschitz 1971). Let (Q, g) be a 4-
dimensional (+,−,−,−) pseudo-Riemannian manifold
called spacetime. The Einstein constant is defined as
κ := 8πG/c4. Let L be some Lagrangian density. The
Hilbert energy-momentum tensor of L is defined as:

Tij :=2
1

|g|1/2
∂

∂gij
(L|g|1/2) (18)

= 2
∂L

∂gij
+ gijL (19)

The Laue scalar of L is:

T := gijTij (20)

The Hilbert-Einstein action integral SHE is defined as:

SHE[g, S] :=

∫
Q

(
1

2κ
R+ L

)
Ωg (21)

Using the identity:

Gij =
1

|g|1/2
δ

δgij
(R|g|1/2)

=Rij −
1

2
gijR

the Euler-Lagrange equation according to variations in
gij of the HE action integral gives the Einstein field
equation (EFE) of general relativity:

Gij = κTij (22)

Tracing both sides of the Einstein equation (22) with gij
and using the fact that gijGij = −R, one finds:

R = −κT (23)

Let’s define this tensor:

Kij := Tij −
1

2
gijT (24)

Using (23), the Einstein equation (22) is equivalent to
the trace-reversed EFE:

Rij = κKij (25)

Assume that the Lagrangian L is defined over real func-
tions S : Q → R. Then, the Euler-Lagrange equation
according to variations in S of (21) gives this other field
equations:

∂i

(
∂L

∂(∂iS)
|g|1/2

)
=
∂L

∂S
|g|1/2 (26)
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4. A SPECIFIC LAGRANGIAN
Let’s fix an electric charge e and a real background

electromagnetic differential 1-form A ∈ Ω1(Q;R). Let’s
choose a specific Lagrangian density L defined over real
functions S on Q:

L = − 6

2κℏ2
∥dS + eA∥2g (27)

Here, S has the physical units of ℏ and the term 1/κ

is only here to match physical units. To simplify the
notation, let’s define respectively a differential 1-form
and a vector field over Q:

α :=dS + eA ∈ Ω1(Q) (28)
v :=∇S + eA♯ ∈ X(Q) (29)

They satisfy α = v♭ and v = α♯. Doing so, the La-
grangian density L can be written equivalently as:

L = − 6

2κℏ2
∥α∥2g = − 6

2κℏ2
∥v∥2g (30)

Using (19) and (30), we get:

Tij =− 6

κℏ2

(
αiαj −

1

2
gij∥α∥2g

)
(31)

T ij =− 6

κℏ2

(
vivj − 1

2
gij∥v∥2g

)
(32)

The Laue scalar becomes:

T =
6

κℏ2
∥α∥2g =

6

κℏ2
∥v∥2g (33)

The Kij tensor becomes:

Kij =− 6

κℏ2
αiαj (34)

Kij =− 6

κℏ2
vivj (35)

The trace-reversed EFE (25) becomes:

Rij =− 6

ℏ2
αiαj (36)

Rij =− 6

ℏ2
vivj (37)

Equation (23) becomes:

R = − 6

ℏ2
∥α∥2g = − 6

ℏ2
∥v∥2g (38)

The Euler-Lagrange equation (26) following from varia-
tions in S is the divergence-free equation:

Div(v) = 0 (39)

When A = 0, this Euler-Lagrange equation is equivalent
to the wave equation □S = 0.

5. FROM GR TO THE KG EQUATION
For our specific Lagrangian L, the field equations

(38,39) can be written as:

−1

6
ℏ2R=∥∇S + eA♯∥2g (40)

0=Div(∇S + eA♯) (41)

It happens that these two equations are equivalent to an
electromagnetically charged version of the conformally
invariant wave equation (Penrose 1964), (Chernikov &
Tagirov 1968), (Sniatycki 1980):(

□A − 1

6
R

)
ψ = 0 (42)

Here, ψ is a WKB wave with constant amplitude:

ψ = eiS/ℏ

and □A is the usual electromagnetically charged
Laplace-Beltrami-d’Alembert operator as defined in §2.
The equivalence of (40,41) with (42) follows from the
fact that we have these real and imaginary components:

ℜ(ψ−1□Aψ)=−ℏ−2
∥∥∇S + eA♯

∥∥2
g

ℑ(ψ−1□Aψ)=ℏ−1Div
(
∇S + eA♯

)
The wave equation (42) is conformally invariant in that,
as mentioned back in §2, for a conformal transformation
ĝ = e2φg it satisfies:(

□̂A − 1

6
R̂

)
(e−φψ) = e−3φ

(
□A − 1

6
R

)
(ψ) (43)

Although proving (43) is left as an exercise for the con-
scientious reader, a clean way to show it is to use this
identity:

□Aψ = □ψ +
2ie

ℏ
A(∇ψ)− ψ

e2

ℏ2
∥A∥2g + ψ

ie

ℏ
Div(A♯)

We want to reach the FSE. In the Schrödinger equa-
tion, the wave function does not have a constant ampli-
tude. However, the WKB wave ψ = eiS/ℏ has a constant
amplitude. We need to give ψ an amplitude function.
For this, two choices are possible. A first choice would
be to add an amplitude function ρ inside the Lagrangian
(27). However, in this case:

1. (31,33,34) would get be more complicated.

2. (36) would become complicated.

3. There would be a new Euler-Lagrange equation
corresponding to variations in ρ.
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4. It would be easier to define L directly in terms of
a wave ψ and not in terms of S and ρ separately.
But we would loose the interesting relationship be-
tween the EFE and the wave equation (42) via the
WKB wave.

Let’s give ψ an amplitude ρ in a different way. Taking
a look at the equation (43), we see that in the left hand
side, e−φ seems to modify the amplitude. Thus, the
second choice to give ψ an amplitude is to define an
amplitude via a conformal transformation:

ĝ := e2φg (44)
ρ := e−φ (45)
ψ̂ :=ρψ = ρeiS/ℏ (46)

Doing so, because of (42) and (43), we know that the
WKB wave with amplitude ψ̂ must satisfy this electro-
magnetically charged wave equation:(

□̂A − 1

6
R̂

)
ψ̂ = 0 (47)

Now that the WKB wave has an amplitude function,
we still lack the mass term m that lies in the FSE. In
the wave equation (47) there is no mass term m. To get
a mass term m, two choices are possible. A first usual
but boring choice would be to add a mass term m in the
Lagrangian (27). However, in this case (31,33,34) would
get more complicated so that (36) would also get more
complicated. Let’s not do that. Instead, remark that
the electromagnetically charged KG equation:

□̂Aψ̂ = −
(mc

ℏ

)2

ψ̂ (48)

looks a lot like (47). Let’s hypothesize that they are the
same equation. This amounts to hypothesize that the
scalar curvature R̂ is constant and equal to:

R̂ = −6
(mc

ℏ

)2

(49)

Let’s call this the mass = curvature hypothesis. Let’s
define the Compton radius as:

rC :=
ℏ
mc

It is related to the Compton wavelength λC in that λC
can be seen as the circumference of a circle of radius rC:

λC = 2πrC

Now, the hypothesis (49) can be written concisely as:

R̂ = − 6

r2C
(50)

Doing so, the WKB wave with amplitude ψ̂ = ρeiS sat-
isfies the electromagnetically charged KG equation (48).

The hypothesis (50) combined with the conformal
transformation (44) implies a relationship between the
scalar curvature R and the Compton radius rC. To sim-
plify subsequent calculations, the amplitude function ρ

will be supposed constant. The function P is then also
supposed constant. This is the coarsest WKB approx-
imation possible, namely that the WKB wave ψ̂ has a
constant amplitude. A possible justification for such an
approximation will come in a later remark. The rela-
tionship between R and rC is then:

R =
R̂

P
= − 6

r2CP
= − 6

r2Cρ
2

(51)

Hence, from now on, we only need to work with the
metric g and not ĝ.

Remark: The equation (38), the definitions (44,45)
and the hypothesis (49) put together imply:

m2c2

ρ2
= ∥α∥2g = ∥v∥2g (52)

This can be reformulated as:

m2c2 = ∥α∥2ĝ (53)

This equation is usually an ad hoc condition. Here, how-
ever, this equation follows from more fundamental first
principles. This is a direct consequence of forging the
effective mass out of geometry.

Remark: The hypothesis (49) relating mass m to the
scalar curvature R̂ is part of a bigger project to define
the effective mass in geometrical terms. Another ap-
proach would be, for example, to define the effective
mass as a momentum in a penta-dimensional setting
(Aubin-Cadot 2018), (Aubin-Cadot 2019).

Remark: The physicality of using a scalar field in GR
is greatly discussed in (Bercelo & Visser 2002). They list
various physical scalar fields e.g. scalar mesons, Higgs
boson, axion, inflaton, Brans-Dicke scalar. However,
they forget to list one ”physical” scalar ”field”, namely
the phase function S of a WKB wave.

Remark: A conformally invariant wave equation such
as (□− R/6)f = 0 is usually found as being the Euler-
Lagrange equation of a modified Hilbert-Einstein action
where there is a notion of conformal coupling, see e.g.
(Brown & Ottewill 1983), (Madsen 1988). Despite the
fact that we did find a conformally invariant wave equa-
tion (47), no such conformal coupling was supposed in
(21), only a minimal coupling.

Remark: Let’s define a light ray of ψ as a gradi-
ent curve of the phase function S (see e.g. (Misner
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& Thorne & Wheeler 1973), p.573). When A = 0,
the equations (40,41,51) imply that the light rays of
ψ are geodesics in (M, g). Because ρ is assumed con-
stant, these geodesics of (M, g) correspond via a re-
parametrization to geodesics of (M, ĝ).

Remark: It could be a good idea to add − 1
4µ0

∥F∥2g
in the Lagrangian density (27) for F := dA the elec-
tromagnetic Maxwell tensor. In such a scenario, (31)
and (34) would be augmented by some electromagnetic
contribution. The Euler-Lagrange equation correspond-
ing to variations in A is δF ∝ α and, combined with
dF = d2A = 0, gives Maxwell’s equations. The Laue
scalar due to F vanishes. Hence, F would not alter the
effective mass of the WKB wave.

Remark: Assume again that the amplitude ρ = e−φ

is constant (or varies slowly enough) in the vicinity of
a villus compared to ĝ so that the derivatives of φ are
discarded in the formula relating R and R̂. Doing so, we
have R̂ = PR as in (51). Hence, R̂ is proportional to R.
Assume moreover that the 4D spacetime scalar curva-
ture R of g is proportional to the 3D spatial scalar cur-
vature. Then, it is plausible that the 3D spatial scalar
curvature of a villus be somewhat close to ±6/r2C. It
happens that 6/r2C is the scalar curvature of a standard
3-sphere S3 of radius rC. Comparing the Compton ra-
dius rC of an electron of mass m = me to the size of
a hydrogen atom being described by the Bohr radius
a0 = rC/α, we get:

rC
a0

= α ≈ 1

137

Here α is not the differential 1-form (28) but a phys-
ical constant without physical units known as the fine
structure constant. Hence, the size of a villus should be
close to 1/137 the size of a hydrogen atom. The WKB
approximation that P varies slowly enough at the scale
of a villus then seems justified.

Remark: When ρ and ĝ are t-independent there seems
to be a link between the Hilbert-Einstein integral over
a long thin cylinder U = [t0, t1]×B3 ⊂ R× R3 and the
probability to find the particle in the small ball B3:∫
U

RΩg =

∫
U

e−2φR̂Ωĝ = − 6

r2C

∫
U

ψ̂†ψ̂Ωĝ ∝
∫
B3

ψ̂†ψ̂Ωǧ

Here, Ωǧ is some volume 3-form on the space R3 induced
by ĝ on R4.

Remark: Because of the villi, the periodically lensed
light rays of the WKB wave would draw paths that could
look like a random walk. Thus, maybe the path integral
formalism could help going from the curved KG equation
to the FSE.

Now, we need to split time and space.

6. SPLITTING TIME AND SPACE
We want to reach the FSE. In this equation, time and

space are splitted, meaning that spacetime is a Cartesian
product of time and space:

Q = R× Q̃

This indicates that we need to consider a spacetime met-
ric g where notions of time and space are explicit. The
most generic such metric on Q = R× Q̃ is of this kind:

g = h2β ⊗ β − g̃ (54)

Here lies a function h : Q → R+, a differential 1-form
β = cdt+β̃ ∈ Ω1(Q;R) for β̃ =

∑
i̸=0 β̃idx

i a differential
1-form without dt and g̃ a (+,+,+) Riemannian metric
without dt on the 3D space Q̃. For simplicity, assume
that g is time-independent so that h, β, β̃ and g̃ are all
time-independent. The indices of β̃i and g̃ij run over
i = 1, 2, 3.

The metric (54) has the same shape and properties of a
Kaluza-Klein (KK) metric. However, it is the time com-
ponents of a (+,−,−,−) = (+) − (+,+,+) spacetime
metric g that is being singled out, not the fifth compo-
nent 5D metric. The t-independence of g corresponds to
the so-called cylindrical condition where the KK metric
is independent of the fifth coordinate. The advantage to
use a KK-ish metric is that it is quite generic and that
there is already a broad literature on KK theory at our
disposal.

The t-independence of g can be concisely written as
L∂0g = 0. Explicitly, we have:

∂0h=0

β̃(∂0)=0

∂0β̃i=0

g̃(∂0, ·)= g̃(·, ∂0) = 0

∂0g̃ij =0

where β̃i := g̃ij β̃j . Let ∥β̃∥2g̃ := g̃ij β̃iβ̃j . The compo-
nents gij of the metric (54) and its inverse matrix gij

are explicitly given by:

gij =


h2 for i = 0, j = 0

h2β̃j for i = 0, j ̸= 0

h2β̃i for i ̸= 0, j = 0

h2β̃iβ̃j − g̃ij for i ̸= 0, j ̸= 0

gij =


h−2 − ∥β̃∥2g̃ for i = 0, j = 0

β̃j for i = 0, j ̸= 0

β̃i for i ̸= 0, j = 0

−g̃ij for i ̸= 0, j ̸= 0
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A direct calculation shows that δij = gikgkj . The follow-
ing explicit formulas for Γk

ij , for Rij and R are deduced
in a (+,−,−,−) = (+) − (+,+,+) context from the
(+,−,−,−,+) = (+,−,−,−) + (+) context computed
by (Williams 2015). For i, j, k, l ̸= 0:

ω :=ωijdx
i ⊗ dxj = (∂iβ̃j − ∂j β̃i)dx

i ⊗ dxj

∥ω∥2g̃ := g̃ikg̃jlωijωkl

∇̃iωjk = ∂iωjk − Γ̃l
ijωlk − Γ̃l

ikωjl

For i, j, k, l ̸= 0, the Christoffel symbols Γk
ij of g are:

Γ0
00=−β̃lh∂lh

Γ0
i0=Γ0

0i = −1

2
β̃lh2ωli − β̃lβ̃ih∂lh+ ∂i lnh

Γ0
ij =−β̃lΓ̃l

ij −
1

2
β̃lβ̃jh

2ωli −
1

2
β̃iβ̃

lh2ωlj

+
1

2
(∂iβ̃j + ∂j β̃i) + β̃j∂i lnh+ β̃i∂j lnh

−β̃iβ̃lβ̃jh∂lh

Γk
00= g̃

klh∂lh

Γk
i0=Γk

0i = −1

2
g̃kl(h2ωil − 2β̃ih∂lh)

Γk
ij =Γ̃k

ij −
1

2
g̃kl(β̃jh

2ωil + β̃ih
2ωjl − 2β̃iβ̃jh∂lh)

The Ricci and scalar curvature of g are given for
i, j, k, l ̸= 0 as follow:

R00=h∆̃h+
1

4
h4∥ω∥2g̃

Ri0=−1

2
h2g̃jk∇̃jωik − 3

2
g̃jkh(∂kh)ωij + β̃iR00

Rij = R̃ij +
1

2
h2g̃klωikωjl − h−1H̃ij(h)

−β̃iβ̃jR00 + β̃iRj0 + β̃jRi0

R=−R̃+ 2h−1∆̃h− 1

4
h2∥ω∥2g̃

Now, one could easily get lost in this happy carnival
of notation. Where to go? Suppose that ω = 0, i.e.
suppose that β̃ is closed. Then, the Ricci components
and the scalar curvature become:

R00=h∆̃h

Ri0= β̃ih∆̃h

Rij = β̃iβ̃jh∆̃h+ R̃ij − h−1H̃ij(h)

R=−R̃+ 2h−1∆̃h

Suppose moreover that for i, j ̸= 0 we have:

R̃ij = h−1H̃ij(h) (55)

Tracing both sides of (55) by g̃ij gives:

R̃ = h−1∆̃h (56)

The Ricci components and the scalar curvature of the
spacetime metric (54) are then given for i, j ̸= 0 by:

R00=h∆̃h (57)
Ri0= β̃ih∆̃h (58)
Rij = β̃iβ̃jh∆̃h (59)
R= R̃ = h−1∆̃h (60)

We want to solve the EFE (36) and the hypothesis (51):

Rij =− 6

ℏ2
αiαj (61)

R=− 6

r2Cρ
2

(62)

That is, for i, j ̸= 0 we want to solve:

− 6

ℏ2
α0α0=h∆̃h (63)

− 6

ℏ2
α0αi= β̃ih∆̃h (64)

− 6

ℏ2
αiαj = β̃iβ̃jh∆̃h (65)

− 6

r2Cρ
2
=R = R̃ = h−1∆̃h (66)

Doing so, for i, j ̸= 0 we get:

α0α0=(hmcρ−1)(hmcρ−1)

α0αi=(hmcρ−1)(hmcρ−1β̃i)

αiαj =(hmcρ−1β̃i)(hmcρ
−1β̃j)

It follows that for i ̸= 0:

α0=hmcρ
−1

αi=hmcρ
−1β̃i

Using β = cdt+ β̃, we get:

α = hmcρ−1β (67)

Although it took a lot of work and sweat to get this
neat little equality, there is a major problem. An impor-
tant physical case is the case where A = 0. In this case,
we have α = dS and, consequently, we get this painful
sequence of equalities for i ̸= 0:

0=∂0(hmcρ
−1β̃i)

=∂0∂iS

=∂i∂0S

=∂i(hmcρ
−1)

=mcρ−1∂ih

Hence, h is constant. Hence, (66) implies that m = 0.
But we do not want a vanishing mass. Hence, something
went wrong. Here is a list of all the assumptions that
were made to simplify the equations:
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1. ρ is a constant. That’s a keeper.

2. R̃ij = h−1H̃ij(h). This is a strong assumption
that needs to admit a non-trivial solution. This
will be checked below in §8.

3. β̃ is closed. We could discard dβ̃ = 0 but then
we would be back to the happy carnival of no-
tation above. Nevertheless, a trick to get rid of
the above painful sequence of equalities is to use
β =

∑3
i=0 βidx

i such that dβ = 0 without assum-
ing β0 = 1 nor that β is t-independent. This is
what we will do in §7.

7. TRYING ANOTHER METRIC
Suppose again that spacetime is a Cartesian product

of time and space:

Q = R× Q̃

Instead of (54), consider a metric of this kind:

g = h2β ⊗ β − g̃ (68)

Here, h : Q → R+ is a t-independent function. β =∑3
i=0 βidx

i ∈ Ω1(Q;R) is a closed differential 1-form
which is not assumed to be t-independent and where β0
is not assumed to equal 1. g̃ is a t-independent (+,+,+)

Riemannian metric without dt on the 3D space Q̃. The
indices of g̃ij run over i = 1, 2, 3. More precisely:

∂0h=0

dβ=0 (i.e. ∂iβj = ∂jβi)

g̃(∂0, ·)= g̃(·, ∂0) = 0

∂0g̃ij =0

In terms of components:

gij =


h2β2

0 for i = 0, j = 0

h2β0βj for i = 0, j ̸= 0

h2βiβ0 for i ̸= 0, j = 0

h2βiβj − g̃ij for i ̸= 0, j ̸= 0

The inverse matrix is:

gij =



1
h2β2

0
− ∥β∥2

g̃

β2
0

for i = 0, j = 0

βj

β0
for i = 0, j ̸= 0

βi

β0
for i ̸= 0, j = 0

−g̃ij for i ̸= 0, j ̸= 0

where for i, j ̸= 0:

βi := g̃ijβj (not gijβj)
β2
0 := (β0)

2

∥β∥2g̃ := g̃ijβiβj

One can verify that gikgkj = δij .
The new metric (68) is not a Kaluza-Klein one because

β is not supposed t-independent. Because of this, we
cannot use the computations done in (Williams 2015).
Nevertheless, the Christoffel symbols, the Ricci com-
ponents and the scalar curvature can be calculated by
hand. For i, j, k ̸= 0, let:

∂ih := g̃ij∂jh

∇̃iβj = ∂iβj − Γ̃k
ijβk

The Christoffel symbols Γk
ij of g and those Γ̃k

ij of g̃ are
related as follow. For i, j, k, l ̸= 0:

Γ0
00=

∂0β0
β0

− hβ0β
l∂lh

Γ0
i0=∂i ln(h) +

∂iβ0
β0

− hβiβ
l∂lh

Γ0
0j =∂j ln(h) +

∂jβ0
β0

− hβjβ
l∂lh

Γ0
ij =

βi∂jh

hβ0
+
βj∂ih

hβ0
− βlβiβjh∂lh

β0
+

∇̃iβj
β0

Γk
00=hβ0β0∂

kh

Γk
i0=hβ0βi∂

kh

Γk
0j =hβ0βj∂

kh

Γk
ij =Γ̃k

ij + hβiβj∂
kh

Some Mahjong skills show that the Ricci curvature ten-
sors Rij of g and R̃ij of g̃ are related for i, j ̸= 0 as:

R00=β0β0h∆̃h

Ri0=β0βih∆̃h

Rij =βiβjh∆̃h+ R̃ij − h−1H̃ij(h)

It follows that the scalar curvature R of g and the scalar
curvature R̃ of g̃ are related as:

R = −R̃+ 2h−1∆̃h (69)

Suppose once more that for i, j ̸= 0 we have:

R̃ij = h−1H̃ij(h) (70)

Tracing both sides of (70) by g̃ij gives:

R̃ = h−1∆̃h (71)

The Ricci and the scalar curvature become:

R00=β0β0h∆̃h (72)
Ri0=β0βih∆̃h (73)
Rij =βiβjh∆̃h (74)
R= R̃ = h−1∆̃h (75)
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We want to solve the EFE (36) and the hypothesis (51):

Rij =− 6

ℏ2
αiαj (76)

R=− 6

r2Cρ
2

(77)

That is, for i, j ̸= 0 we want to solve:

− 6

ℏ2
α0α0=β0β0h∆̃h (78)

− 6

ℏ2
α0αi=β0βih∆̃h (79)

− 6

ℏ2
αiαj =βiβjh∆̃h (80)

− 6

r2Cρ
2
=R = R̃ = h−1∆̃h (81)

Doing so, for i, j ̸= 0 we get:
α0α0=(hmcρ−1β0)(hmcρ

−1β0)

α0αi=(hmcρ−1β0)(hmcρ
−1βi)

αiαj =(hmcρ−1βi)(hmcρ
−1βj)

Hence, as in (82), we get:
α = hmcρ−1β (82)

There is no painful sequence of equalities awaiting.
However, something strange is happening. A straight-
forward calculation using (68) and (82) shows that v =

α♯ is explicitly given by:

v = α♯ = gijαi∂j =
mc

hρβ0
∂0 =

m2c2

ρ2α0
∂0 (83)

So, the vector field v ∈ X(R × Q̃) points straight up
in the time direction. This is fairly rigid and seems to
prevent any interesting dynamics. On the other side,
a good news is that a straightforward calculation using
the Christoffel symbols of the metric (68) shows that v
satisfies the divergence-free equation (39):

Div(v) = 0

Recalling from (52) that the length of v is constant, a
straightforward calculation shows that:

Lvh=0

dα=mcρ−1dh ∧ β = d lnh ∧ α

Lvα=−m
2c2

ρ2
d lnh

Lvβ=−mc
ρ

dh

h2

Lv g̃=0

Lvg=−mc
ρ
dh⊙ β

In particular, v is not a Killing vector field of g.
Now, we must deal with the hypothesis (70). Is this

hypothesis valid?

8. ON THE EXISTENCE OF H

The goal here is to build a metric g̃ that satisfies (70):

R̃ij = h−1H̃ij(h) (84)
for some function h. Inspired by the Euclidean metric
on R3 given in spherical coordinates:

dr ⊗ dr + r2 · (dθ ⊗ dθ + sin2(θ) · dφ⊗ dφ)

let’s consider a metric of this kind:

g̃ = f(r)2 · dr ⊗ dr + r2 · (dθ ⊗ dθ + sin2(θ) · dφ⊗ dφ)

In terms of components:

g̃11= f
2

g̃22= r
2

g̃33= r
2 sin2(θ)

g̃ij =0 else

Its inverse matrix is given by:

g̃11=1/f2

g̃22=1/r2

g̃33=1/(r2 sin2(θ))

g̃ij =0 else

The Christoffel symbols are:

Γ̃1
11=∂1 ln f

Γ̃1
22=−rf−2

Γ̃1
33=−rf−2 · sin2(θ)

Γ̃2
12=Γ̃2

21 = r−1

Γ̃2
33=− sin(θ) cos(θ)

Γ̃3
13=Γ̃3

31 = r−1

Γ̃3
23=Γ̃3

32 = cot(θ)

Γ̃k
ij =0 else

The Ricci curvature is:

R̃11=2r−1∂1 ln f

R̃22=−f−2 + rf−3∂1f + 1

R̃33=(−f−2 + rf−3∂1f + 1) sin2(θ)

R̃ij =0 else

The scalar curvature satisfies:

r2R̃ = 2(1− ∂1(rµ)) (85)

where µ = f−2. Suppose that h = h(r). It’s Hessian is:

H̃11(h)=∂1∂1h− (∂1 ln f)∂1h

H̃22(h)=−Γ̃1
22∂1h = rf−2 · ∂1h

H̃33(h)=−Γ̃1
33∂1h = rf−2 · sin2(θ) · ∂1h

H̃ij(h)=0 else
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Its Laplacian is then:

∆̃h= g̃ijH̃ij(h)

= f−2 ·
(
∂1∂1h− (∂1 ln f) ∂1h+ 2r−1∂1h

)
We want to find f and h that satisfy (84). This amounts
to solve three equations:

R̃ii = h−1 · H̃ii(h) i = 1, 2, 3

These three equations amount to solve two partial dif-
ferential equations:

2r−1∂1 ln f =h
−1∂1∂1h− (∂1 ln f)(∂1 lnh) (86)

∂1 lnh=∂1 ln f + (f2 − 1)r−1 (87)

A first obvious, but useless, solution is given by:

h(r)=1

f(r)=1

Another solution is the exterior Schwarzschild solution:

h(r)= (1−Rs/r)
1/2

f(r)= (1−Rs/r)
−1/2

where Rs = 2GM/c2 is the Schwarzschild radius of a
spherical body of mass M . However, this solution is
useless for us. Indeed, such a h(r) = (1−Rs/r)

1/2 has a
vanishing Laplacian ∆̃h. Doing so, this solution cannot
be used to define a nonvanishing mass:

−6

(
mc

ℏρ

)2

= R = R̃ = h−1∆̃h = 0

We need a third solution. A naive idea would be to try
the interior Schwarzschild solution:

h(r)=
3

2
(1−Rs/Rg)

1/2 − 1

2
(1− r2Rs/R

3
g)

1/2

f(r)= (1− r2Rs/R
3
g)

−1/2

where Rg is the value of r at the surface of a mass M
spherical body. However, these two functions h(r) and
f(r) are not solutions to the above two PDE’s (86,87).

Let’s try something else. Suppose that g̃ has a con-
stant scalar curvature R̃ = −6/(rCρ)

2. Using (85), we
get:

−6r2/(rCρ)
2 = 2(1− ∂1(rµ))

where µ = f−2. This implies:

f = µ−1/2 = (1 + a/r + r2/(rCρ)
2)−1/2

for some constant a. Now that we have f , we need to
find h that solves (86,87). When a = −Rs and rC = +∞
(or ρ = +∞), this leads to the useless Schwarzschild
solution. When a = 0, the second equation (87) leads
to:

h = b/(1 + r2/(rCρ)
2)

for some constant b. However, this function does not
solve the first equation (86). So we need to take a ̸= 0.
But then things get nasty.

At this point it seems that the amount of assumptions
we made, namely that dβ = 0, that R̃ij = h−1H̃ij(h)

and that g̃ depends only on r, is too restrictive. It might
be a good idea to seek for metrics g depending also on θ
and where dβ ̸= 0. This would lead us in so-called Kerr
solution territories. But we would seek for a more com-
plicated metric than merely a Kerr one because we want
a constant non-vanishing spacetime scalar curvature R.

Also, as was noted back in §7, in equation (83) we
found that v must point in the time direction ∂0. Both
in §6 and §7, the metric was chosen so that a time di-
rection was singled out. Maybe it would be better to
re-interpret the metric so that we single out the direc-
tion of the timelike vector field v independently of some
independent background time direction.

9. CONCLUSION AND OPENING
Conclusion: The goal of this study was to reach the

flat Schrödinger equation from a GR setting. Such a
quest was guided by two points. First, by a curious re-
lationship between the Einstein field equation and the
WKB approximation of the KG equation. Second, by
the desire to define the effective mass in geometrical
terms only. Along the way, the main problem was to
find a solution to the EFE. No solution was found. Do-
ing so, the subsequent plan to tessellate space and define
an averaged flat spatial metric was not even started and
the FSE was not reached.

Opening: Many choices and assumptions were made
along the way that could be lifted or modified to solve
the EFE. As remarked in §4, adding an electromagnetic
contribution − 1

4µ0
∥F∥2g to the Lagrangian density (27)

might be a good idea. Such a terms would not alter
the effective mass of the WKB wave while it would add
terms to the Ricci curvature Rij . These electromagnetic
added terms could match the terms of an eventually non-
vanishing dβ in the EFE.
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